Investigation of the viscosity of magnetic-liquid systems using the developed capillary viscometer
- Authors: Churaev A.A.1, Shel’deshova E.V.1, Bondar’ E.V.1, Ryapolov P.A.1
- 
							Affiliations: 
							- Southwest State University
 
- Issue: Vol 88, No 11 (2024)
- Pages: 1822–1829
- Section: Physics of Magnetism
- URL: https://journals.rcsi.science/0367-6765/article/view/285137
- DOI: https://doi.org/10.31857/S0367676524110269
- EDN: https://elibrary.ru/FIZUIW
- ID: 285137
Cite item
Abstract
We studied the viscosity of liquids using a capillary viscometer of our own design. The viscosity value is determined by the pressure drop in the capillary, which makes it possible to study optically opaque liquids and carry out measurements in a magnetic field. A series of calibration experiments were carried out on liquids with a known viscosity value. The obtained dependences of the magnetic-viscous effect in magnetic fluid samples with different structures and physical parameters are consistent with known theoretical and experimental data.
About the authors
A. A. Churaev
Southwest State University
														Email: r-piter@yandex.ru
				                					                																			                												                	Russian Federation, 							Kursk, 305040						
E. V. Shel’deshova
Southwest State University
														Email: r-piter@yandex.ru
				                					                																			                												                	Russian Federation, 							Kursk, 305040						
E. V. Bondar’
Southwest State University
														Email: r-piter@yandex.ru
				                					                																			                												                	Russian Federation, 							Kursk, 305040						
P. A. Ryapolov
Southwest State University
							Author for correspondence.
							Email: r-piter@yandex.ru
				                					                																			                												                	Russian Federation, 							Kursk, 305040						
References
- Schinteie G., Palade P., Vekas L., Iacob N. et al. // J. Phys. D. Appl. Phys. 2013. V. 46. No. 39. Art. No. 395501.
- Zhou H., Chen Y., Zhang Y. et al. // Tribol. Trans. 2021. V. 64. No. 1. P. 31.
- Wei F., Mallik A.K., Liu D. et al. // Sci. Reports. 2017. V. 7. No. 1. P. 4725.
- Zhao Y., Wang X.X., Lv R.Q. et al. // IEEE Trans. Instrum. Meas. 2020. V. 70. P. 1.
- Munshi M.M., Patel A.R., Deheri G.M. // IJMEMS. 2019. V. 4. No. 4. P. 982.
- Jia J., Yang G., Zhang C. et al. // Friction. 2021. V. 9. P. 61.
- Wang J., Zhuang W., Liang W. et al. // Friction. 2022. V. 10. No. 5. P. 645.
- Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Sheldeshova E.V. et al. // Bull. Russ. Acad. Sci. 2023. V. 87. No. 3. P. 295.
- Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. 2023. V. 87. No. 3. P. 300.
- Ерин К.В., Вивчарь В.И., Шевченко Е.И. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 315; Yerin K.V., Vivchar V.I., Shevchenko E.I. // Bull. Russ. Acad. Sci. 2023. V. 87. No. 3. P. 272.
- Shliomis M.I. // Lect. Notes Phys. 2008. P. 85.
- Rosensweig R.E., Kaiser R., Miskolczy G. // J. Colloid Interface Sci. 1969. V. 29. No. 4. P. 680.
- Ambacher O., Odenbach S., Stierstadt K. // Z. Phys. B. Cond. Matter. 1992. V. 86. No. 1. P. 29.
- Odenbach S. // Int. J. Modern Phys. B. 2000. V. 14. No. 16. P. 1615.
- Odenbach S., Thurm S. // In: Ferrofluids: magnetically controllable fluids and their applications. Berlin, Heidelberg: Springer, 2002. P. 185.
- Viswanath D.S., Ghosh T.K., Prasad D.H. et al. Viscosity of liquids: theory, estimation, experiment, and data. Springer Science & Business Media, 2007.
- Woodfield P.L., Seagar A., Hall W. // Int. J. Thermophys. 2012. V. 33. P. 259.
- Sato Y., Kameda Y., Nagasawa T. et al. // J. Crystal Growth. 2003. V. 249. No. 3–4. P. 404.
- Zhu P., Lai J., Shen J. et al. // Measurement. 2018. V. 122. P. 149.
- Linke J.M., Odenbach S. // J. Phys. Cond. Matter. 2015. V. 27. No. 17. Art. No. 176001.
- Pop L.M., Odenbach S. // J. Phys. Cond. Matter. 2008. V. 20. No. 20. Art. No. 204139.
- Nowak J., Odenbach S. // J. Magn. Magn. Mater. 2016. V. 411. P. 49.
- Nowak J., Borin D., Haefner S. et al. // J. Magn. Magn. Mater. 2017. V. 442. P. 383.
- Шельдешова Е.В., Ряполов П.А., Рекс А.Г. и др. // Изв. Юго-Запад. гос. ун-та. Сер. Техн. и технол. 2022. Т. 12. № 3. С. 130.
- Shel’deshova E., Churaev A., Ryapolov P. // Fluids. 2023. V. 8. No. 2. P. 47.
- Полунин В.М. Акустические свойства нанодисперсных магнитных жидкостей. М.: Физматлит, 2012. 384 с.
- Polunin V. Acoustics of nanodispersed magnetic fluids. CRC Press, 2015.
- Polunin V.M., Storozhenko A.M., Ryaplolov P.A. Mechanics of liquid nano-and microdispersed magnetic media. CRC Press, 2017.
- Afifah A.N., Syahrullail S., Sidik N.A.C. // Renew. Sustain. Energy Rev. 2016. V. 55. P. 1030.
- Felicia L.J., Vinod S., Philip J. // J. Nanofluids. 2016. V. 5. No. 1. P. 1.
- Vékás L., Raşa M., Bica D. // J. Colloid Interface Sci. 2000. V. 231. No. 2. P. 247.
- Hong R.Y., Zhang S.Z., Han Y.P. et al. // Powder Technol. 2006. V. 170. No. 1. P. 1.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				
 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					