Numerical calculation of electric field enhancement in neutron traps with rough walls coated with superfluid helium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A film of liquid helium on the surface of material traps for ultra-cold neutrons protects the neutrons from being absorbed by the trap walls. By using surface roughness and an electrostatic field, it is possible to maintain a helium film of sufficient thickness throughout the height of the trap. Our study includes a numerical calculation of the field distribution near the tip of various forms of such wall roughness of the trap and the discussion how this field helps to hold the helium film.

Full Text

Restricted Access

About the authors

V. D. Kochev

National University of Science and Technology «MISIS»

Email: grigorev@itp.ac.ru
Russian Federation, Moscow

T. I. Mogilyuk

National Research Centre «Kurchatov Institute»

Email: grigorev@itp.ac.ru
Russian Federation, Moscow

S. S. Kostenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: grigorev@itp.ac.ru
Russian Federation, Chernogolovka

P. D. Grigoriev

National University of Science and Technology «MISIS»; L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: grigorev@itp.ac.ru
Russian Federation, Moscow; Chernogolovka

References

  1. Abele H. // Progr. Part. Nucl. Phys. 2008. V. 60. No. 1. P. 1.
  2. Ramsey-Musolf M.J., Su S. // Phys. Reports. 2008. V. 456. No. 1. P. 1.
  3. Dubbers D., Schmidt M.G. // Rev. Mod. Phys. 2011. V. 83. No. 4. P. 1111.
  4. Wietfeldt F.E., Greene G.L. // Rev. Mod. Phys. 2011. V. 83. No. 4. P. 1173.
  5. Gonzalez-Alonso M., Naviliat-Cuncic O., Severijns N. // Progr. Part. Nucl. Phys. 2019. V. 104. P. 165.
  6. Liu J., Mendenhall M.P., Holley A.T. et al. // Phys. Rev. Lett. 2010. V. 105. No. 18. Art. No. 181803.
  7. Märkisch B., Mest H., Saul H. et al. // Phys. Rev. Lett. 2019. V. 122. No. 24. Art. No. 242501.
  8. Sun X., Adamek E., Allgeier B. et al. // Phys. Rev. C. 2020. V. 101. No. 3. Art. No. 035503.
  9. Serebrov A.P., Varlamov V.E., Kharitonov A.G. et al. // Phys. Rev. C. 2008. V. 78. No. 3. Art. No. 035505.
  10. Arzumanov S., Bondarenko L., Chernyavsky S. et al. // Phys. Lett. B. 2015. V. 745. Art. No. 79.
  11. Cеребров А.П., Коломенский Е.А., Фомин А.К. и др. // Письма в ЖЭТФ. 2017. Т. 106. № 10. С. 599; Serebrov A.P., Kolomenskiy E.A., Fomin A.K. et al. // JETP Lett. 2017. V. 106. No. 10. P. 623.
  12. Serebrov A.P., Kolomenskiy E.A., Fomin A.K. et al. // Phys. Rev. C. 2018. V. 97. No. 5. Art. No. 055503.
  13. Pattie R. ., Callahan N.B., Cude-Woods C. et al. // EPJ Web Conf. 2019. V. 219. Art. No. 03004.
  14. Huffman P.R., Brome C.R., Butterworth J.S. et al. // Nature. 2000. V. 403. No. 6765. P. 62.
  15. Leung K.K.H., Geltenbort P., Ivanov S. et al. // Phys. Rev. C. 2016. V. 94. No. 4. Art. No. 045502.
  16. Steyerl A., Leung K.K.H., Kaufman C. et al. // Phys. Rev. C. 2017. V. 95. No. 3. Art. No. 035502.
  17. Ezhov V.F., Andreev A.Z., Bazarov B.A. et al. // JETP Lett. 2018. V. 107. No. 11. P. 671.
  18. Pattie R.W., Callahan N.B., Cude-Woods C. et al. // Science. 2018. V. 360. No. 6389. P. 627.
  19. Gonzalez F.M., Fries E.M., Cude-Woods C. et al. // Phys. Rev. Lett. 2021. V. 127. No. 16. Art. No. 162501.
  20. Nico J.S., Dewey M.S., Gilliam D.M. et al. // Phys. Rev. C. 2005. V. 71. No. 5. Art. No. 055502.
  21. Yue A.T., Dewey M.S., Gilliam D.M. et al. // Phys. Rev. Lett. 2013. V. 111. No. 22. Art. No. 222501.
  22. Hirota K., Ichikawa G., Ieki S. // Progr. Theor. Exp. Phys. 2020. V. 2020. No. 12. Art. No. 123C02.
  23. Grigoriev P.D., Dyugaev A.M. // Phys. Rev. C. 2021. V. 104. No. 5. Art. No. 055501.
  24. Григорьев П.Д., Дюгаев А.М., Могилюк Т.И., Григорьев А.Д. // Письма в ЖЭТФ. 2021. Т. 114. № 8. С. 560; Grigoriev P.D., Dyugaev A.M., Mogilyuk T.I., Grigoriev A.D. // JETP Lett. 2021. V. 114. No. 8. P. 493.
  25. Grigoriev P.D., Sadovnikov A.V., Kochev V.D., Dyugaev A.M. // Phys. Rev. C. 2023. V. 108. No. 2. Art. No. 025501.
  26. Golub R., Jewell C., Ageron P. et al. // Z. Phys. B. Cond. Matter. 1983. V. 51. No. 3. P. 187.
  27. Bokun R.C. // Sov. J. Nucl. Phys. 1984. V. 40. No. 1. P. 287.
  28. Aлфименков В.П., Игнатович В.К., Межов-Деглин Л.П. и др. // Препринт ОИЯИ. № 3-2009-197. Дубна, 2009.
  29. Aлексеев И.Е., Белов С.Е., Ершов К.В. // Изв. РАН. Сер. физ. 2022. T. 86. № 9. С. 1315; Alekseev I.E., Belov S.E., Ershov K.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1088.
  30. Григорьев С.В., Коваленко Н.А., Павлов К.А. и др. // Изв. РАН. Сер. физ. 2023. T. 87. № 11. С. 1526; Grigoriev S.V., Kovalenko N.A., Pavlov K.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 11. P. 1561.
  31. Grigoriev P.D., Zimmer O., Grigoriev A.D., Ziman T. // Phys. Rev. C. 2016. V. 94. No. 2. Art. No. 025504.
  32. Florkowska B., Wlodek R. // IEEE Trans. Electr. Insul. 1993. V. 28. No. 6. P. 932.
  33. Arndt D., Bangerth W., Davydov D. et al. // J. Comput. Math. Appl. 2021. V. 81. P. 407.
  34. Geuzaine C., Remacle J.F. // Int. J. Numer. Meth. Eng. 2009. V. 79. No. 11. P. 1309.
  35. Marchetti S., Rozzi T. // IEEE Trans. Antennas Propag. 1990. V. 38. No. 9. P. 1333.
  36. Ito T.M., Ramsey J.C., Yao W. et al. // Rev. Sci. Instrum. 2016. V. 87. No. 4. Art. No. 045113.
  37. Bourgin Y., Jourlin Y., Parriaux O. et al. // Opt. Express. 2010. V. 18. No. 10. P. 10557.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Calculation grid of finite elements for pyramids of size 𝑙R = ℎR = 1 μm. Distribution of electric field amplification factor is shown in color.

Download (40KB)
3. Fig. 2. Electric field amplification near the roughness tip of the trap wall.

Download (12KB)
4. Fig. 3. Curves from Fig. 2 in double logarithmic scale.

Download (11KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».