Atomistic simulation of self-diffusion in nickel grain boundaries
- Авторлар: Urazaliev M.G.1, Stupak M.E.1, Popov V.V.1
-
Мекемелер:
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
- Шығарылым: Том 88, № 9 (2024)
- Беттер: 1352–1359
- Бөлім: Condensed Matter Physics
- URL: https://journals.rcsi.science/0367-6765/article/view/283354
- DOI: https://doi.org/10.31857/S0367676524090034
- EDN: https://elibrary.ru/OELQKZ
- ID: 283354
Дәйексөз келтіру
Аннотация
The self-diffusion coefficient for symmetrical tilt boundaries and for the general type of grain boundaries in nickel has been calculated by atomistic simulation methods. The special tilt grain boundaries have been simulated in the bicrystal model, and the general type of grain boundaries in the nanocrystal model. The self-diffusion coefficient is presented as a temperature dependence. The activation energies of self-diffusion have been determined.
Толық мәтін

Авторлар туралы
M. Urazaliev
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: urazaliev@imp.uran.ru
Ресей, Ekaterinburg
M. Stupak
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: urazaliev@imp.uran.ru
Ресей, Ekaterinburg
V. Popov
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: urazaliev@imp.uran.ru
Ресей, Ekaterinburg
Әдебиет тізімі
- Кульков В.Г. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1232; Kul’kov V.G. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1043.
- Звягинцева А.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1290; Zvyginceva A.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1097.
- Mishin Y., Herzig C. // Mater. Sci. Eng. A. 1999. V. 260. P. 55.
- Kaur I., Mishin Y., Gust W. Fundamentals of grain and interphase boundary diffusion. John Wiley, 1995. 5536 p.
- Budke E., Herzig C., Prokofjev S., Shvindlerman L.S. // Mater. Sci. Forum. 1996. V. 207. P. 465.
- Suzuki A., Mishin Y. // Interface Sci. 2003. V. 11. P. 131.
- Nomura M., Adams J.B. // J. Mater. Res. 1992. V. 7. P. 3202.
- Keblinski P., Wolf D., Phillpot S.R., Gleiter H. // Philos. Mag. A. 1999. V. 79. P. 2735.
- Sorensen M.R., Mishin Y., Voter A.F. // Phys. Rev. B. 2000. V. 62. No. 6. P. 3658.
- Mendelev M.I., Zhang H., Srolovitz D.J. // J. Mater. Res. 2005. V. 20. P. 1146.
- Mishin Y., Asta M., Li J. // Acta Mater. 2010. V. 58. P. 1117.
- Bai X.M., Voter A.F., Hoagland R.G. et al. // Science. 2010. V. 327. P. 1631.
- Bai X.M., Vernon L.J., Hoagland R.G. et al. // Phys. Rev. B. 2012. V. 85. P. 214103.
- Uberuaga B.P., Vernon L.J., Martinez E., Voter A.F. // Sci. Reports. 2015. V. 5. No. 1. P. 9095.
- Mohammadzadeh R., Mohammadzadeh M. // J. Appl. Phys. 2018. V. 124. Art. No. 035102.
- Wang Y.J., Gao G.J.J., Ogata S. // Phys Rev. B. 2013. V. 88. Art. No. 115413.
- Mohammadzadeh M., Mohammadzadeh R. // Comput. Mater. Sci. 2017. V. 129. P. 239.
- Mohammadzadeh R. // J. Appl. Phys. 2019. V. 125. No. 13. P. 135103.
- Bokstein B.S. // NSMs. 1995. V. 6. P. 873.
- Yamakov P.V., Wolf D., Phillpot S.R., Gleiter H. // Acta Mater. 2002. V. 50. No. 1. P. 61.
- Shvindlerman L. S., Gottstein G., Ivanov V. A. et al. // J. Mater. Sci. 2006. V. 41. P. 7725.
- Plimpton S. // J. Comput. Phys. 1995. V. 117. No. 1. P. 1.
- Stukowski A. // Mater. Sci. Eng. 2010. V. 18. Art. No. 015012.
- Семенов М.Ю., Королев И.П., Арестов В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. С. 948; Semenov M.Yu., Korolev I.P., Arestov V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 728.
- Stoller R.E., Tamm A., Béland L.K. et al. // J. Chem. Theory Comput. 2016. V. 12. No. 6. P. 2871.
- Уразалиев М.Г., Ступак М.Е., Попов В.В. // Физ. металл. металловед. 2021. Т. 122. С. 713; Urazaliev M.G., Stupak M.E., Popov V.V. // Phys. Metals. Metallogr. 2021. V. 122. P. 665.
- Polyak B.T. // USSR Comput. Math. Math. Phys. 1969. V. 9. No. 4. P. 94.
- Tschopp M.A., Solanki K.N., Gao F. et al. // Phys. Rev. B. 2012. V. 85. Art. No. 064108.
- Nosé S. // J. Chem. Phys. 1984. V. 81. No. 1. P. 511.
- Hoover W.G., Holian B.L. // Phys. Lett. Sect. A. 1996. V. 211. P. 253.
- Hirel P. // Comput. Phys. Comm. 2015. V. 197. P. 212.
- Wagih M., Schuh C.A. // Scripta Mater. 2023. V. 237. Art. No. 115716.
- Starikov S., Mrovec M., Drautz R. // Acta Mater. 2020. V.188. P. 560.
- Frolov T., Olmsted D., Asta M. et al. // Nature Commun. 2013. V. 4. No. 1. Art. No. 1899.
- Maxwell-Garnett J.C., Larmor J.Xii // Philos. Trans. Royal Soc. Lond. A. Contain. Pap. Math. Phys. Char. 1904. V. 203. No. 359–371. P. 385.
- Hart E.W. // Acta Metallurg. 1957. V. 5. No. 10. P. 597.
- Faken D., Jónsson H. // Comput. Mater. Sci. 1994. V. 2. No. 2. P. 279.
- Fultz B., Frase H. // Hyperfine Interact. 2000. V. 130. P. 81.
- Canon R.F, Stark J.P. // J. Appl. Phys. 1969. V. 40. No. 11. P. 4366.
- Бокштейн С.З., Кишкин С.Т., Мишин Ю.М., Разумовский И.М. // Докл. АН СССР. 1985. Т. 280. № 5. C. 1125.
- https://drive.google.com/drive/folders/117hFltef46fj3GGeHexiGVwocHSHv4J-?usp=drive_link
- http://dx.doi.org/10.13140/RG.2.2.23789.60641
Қосымша файлдар
