To the theory of remagnetization kinetics of magnetic composites
- Autores: Zubarev A.Y.1, Iskakova L.Y.1
-
Afiliações:
- Ural Federal University
- Edição: Volume 88, Nº 4 (2024)
- Páginas: 653-659
- Seção: Magnetic Phenomena and Smart Composite Materials
- URL: https://journals.rcsi.science/0367-6765/article/view/271458
- DOI: https://doi.org/10.31857/S0367676524040188
- EDN: https://elibrary.ru/QHAUVR
- ID: 271458
Citar
Resumo
Results of theoretical study of kinetics of the remagnetization of an ensemble of interacting ferromagnetic particles immobilized in a host non -magnetic medium are presented. The results show that the influence of interparticle interaction on the remagnetization is determined by the amplitude of the applied alternating field: it slows down this process in a weak field and accelerates it in a strong field. The interaction of particles increases both components of the complex magnetic susceptibility of the composite.
Sobre autores
A. Zubarev
Ural Federal University
Autor responsável pela correspondência
Email: A.J.Zubarev@urfu.ru
Rússia, Ekaterinburg, 620000
L. Iskakova
Ural Federal University
Email: A.J.Zubarev@urfu.ru
Rússia, Ekaterinburg, 620000
Bibliografia
- Boczkowska A., Awietjan S.F. // Mater. Sci. Forum. 2010. V. 636–637. P. 766.
- Lopez-Lopez M. T., Scionti G., Oliveira A.C. et al. // PLoS ONE. 2015. V. 10. No. 1. Art. No. e0133878.
- Bira N., Dhagat P., Davidson J.R.// Front. Robot. AI. 2020. V. 7. Art. No. 588391.
- Kurlyandskaya G.V., Blyakhman F.A., Makarova E.B. et al. // AIP Advances. 2020. V. 10. P. 12512.
- Rajan A., Sahu N.K. // J. Nanopart. Res. 2020. V. 22. P. 319.
- Vilas-Boas V. // Molecules. 2020. V. 25. P. 2874
- Lingbing Li. // In: Handbook of materials for nanomedicine. eBook, 2020.
- Chung H-J., Parsons A, Zheng L. // Adv. Intell. Syst. 2021. V. 3. Art. No. 2000186.
- Kaewruethai T, Laomeephol C., Pan Y., Luckanagul J. // Gels. 2021. V. 7. P. 228.
- Sung B., Kim M-H., Abelmann L. // Bioeng. Transl. Med. 2021. V. 6. Art. No. e10190.
- Imran M., Affandi A.M., Alam M.M. et al. // Nanotechnology. 2021. V. 32. No. 42. Art. No. 422001
- Naghdi M., Ghovvati M., Rabiee N. et al. //Adv. Colloid Interface Sci. 2022. V. 308. Art. No. 102771.
- Socoliuc V., Avdeev M.V., Kuncser V. et al. // Nanoscale. 2022. V. 14. P. 4786.
- Schneider M., Martín M., Otarola J. et al. // Pharmaceutics. 2022. V. 14. P. 204.
- Rosensweig R.E. // J. Magn. Magn. Mater. 2002. V. 252. P. 370.
- Poperechny I.S., Raikher Yu.L., Stepanov V.I. // Phys. Rev. B. 2010. V. 82. Art. No. 174423.
- Engelmann U., Buhl E.M., Baumann M. et al. // Curr. Dir. Biomed. Eng. 2017. V. 3. P. 457.
- Coral D.F., Zélis P.M., Marciello M. et al. // Langmuir. 2016. V. 32. No. 5. P. 1201.
- Branquinho L.C., Carriao M.S., Costa A.S. et al. // Sci. Reports. 2013. V. 3. P. 2887.
- Mehdaoui B., Tan R.P., Meffre A. et al. // Phys. Rev. B. 2013. V. 87. Art. No. 174419.
- Serantes D., Baldomir D., Martinez-Boubeta C. et al. // J. Appl. Phys. 2010. V. 108. Art. No. 073918.
- Valdés D.P., Lima E., Zysler J., De Biasi E. // Phys. Rev. Appl. 2020. V. 14. Art. No. 014023.
- Landi G.T. // Phys. Rev. B. 2014. V. 89. Art. No. 014403.
- Zubarev A. Yu. // Phys. Rev. E. 2019. V. 99. Art. No. 062609.
- Ambarov A.V., Zverev Vl.S., Elfimova E.A. // J. Magn. Magn. Mater. 2020. V. 497. Art. No. 166010.
- Dutz S., Kettering M., Hilger I. et al. // Nanotechnology. 2011. V. 22. Art. No. 265102.
- Perigo E.A., Hemery G., Sandre O. et al. // Appl. Phys. Rev. 2015. V. 2. Art. No. 041302.
Arquivos suplementares
