Magnetic nanoparticles produced by pulsed laser ablation of thin cobalt films in water
- Authors: Dzhun I.O.1, Nesterov V.Y.1,2, Shuleiko D.V.1, Zabotnov S.V.1, Presnov D.Е.1, Alekhina Y.A.1, Konstantinova E.A.1, Perov N.S.1, Chechenin N.G.1
-
Affiliations:
- Lomonosov Moscow State University
- Moscow Institute of Physics and Technology
- Issue: Vol 88, No 4 (2024)
- Pages: 627-637
- Section: Magnetic Phenomena and Smart Composite Materials
- URL: https://journals.rcsi.science/0367-6765/article/view/271451
- DOI: https://doi.org/10.31857/S0367676524040158
- EDN: https://elibrary.ru/QHDWXU
- ID: 271451
Cite item
Abstract
The possibility of synthesizing nanoparticles by pulsed laser ablation of thin cobalt films in water is shown. The average size of the formed nanoparticles varies in the range of 70–1020 nm depending on the thickness of the ablated film. At film thicknesses less than 35 nm, the size dispersion of the nanoparticles
About the authors
I. O. Dzhun
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Skobeltsyn Institute of Nuclear Physics
Russian Federation, Moscow, 119991V. Y. Nesterov
Lomonosov Moscow State University; Moscow Institute of Physics and Technology
Author for correspondence.
Email: nesterovvy@my.msu.ru
Lomonosov Moscow State University, Faculty of Physics
Russian Federation, Moscow, 119991; Dolgoprudny, 141701D. V. Shuleiko
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Faculty of Physics
Russian Federation, Moscow, 119991S. V. Zabotnov
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Faculty of Physics
Russian Federation, Moscow, 119991D. Е. Presnov
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Skobeltsyn Institute of Nuclear Physics
Russian Federation, Moscow, 119991Yu. A. Alekhina
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Faculty of Physics
Russian Federation, Moscow, 119991E. A. Konstantinova
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Faculty of Physics
Russian Federation, Moscow, 119991N. S. Perov
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Faculty of Physics
Russian Federation, Moscow, 119991N. G. Chechenin
Lomonosov Moscow State University
Email: nesterovvy@my.msu.ru
Skobeltsyn Institute of Nuclear Physics; Faculty of Physics
Russian Federation, Moscow, 119991References
- Lu A.-H., Salabas E.L., Schüth F. // Angew. Chem. Int. Ed. 2007. V. 46. No. 8. P. 1222.
- Long N.V., Yang Y., Teranishi T. et al. // Mater. Des. 2015. V. 86. P. 797.
- Liu X.Y., Gao Y.Q., Yang G.W. // Nanoscale. 2016. V. 8. P. 4227.
- Alonso-Domínguez D.D., Alvarez-Serrano I.I., Pico M.P. // J. Alloys. Compounds. 2017. V. 695. P. 3239.
- Blakemore J.D., Gray H.B., Winkler J.R., Mueller A.M. // ACS Catalysis. 2013. V. 3. No. 11. P. 2497.
- Li L.H., Xiao J., Liu P., Yang G.W. // Sci. Reports. 2014. V. 5. Art. No. 9028.
- Kunitsyna E.I., Allayarov R.S., Koplak O.V. et al. // ACS Sensors. 2021. V. 6. No. 12. P. 4315.
- Abdulwahid F.S., Haider A.J., Al-Musawi S. // Nano Rev. 2022. V. 17. No 11. Art. No. 2230007.
- Papis E., Rossi F., M. Raspanti M. et al. // Toxic. Lett. 2009. V. 189. P. 253.
- Périgo E.A., Hemery G., Sandre O. et al. // Appl. Phys. Rev. 2015. V. 2. Art. No. 41302.
- Ichiyanagi Y., Yamada S. // Polyhedron. 2005. V. 24. P. 2813.
- Mehdaoui B., Meffre A., Carrey J. et al. // Adv. Funct. Mat. 2011. V. 21. Art. No. 4573.
- Usov N.A., Gubanova E.M., Wei Z.H. // J. Phys. Conf. Ser. 2020. V. 1439. Art. No. 012044.
- Мельников Г.Ю., Лепаловский В.Н., Сафронов А.П. и др. // ФТТ. 2023. Т. 65. № 7. С. 1100; Melnikov G. Yu, Lepalovskij V.N., Safronov A.P. et al. // Phys. Sol. St. 2023. V. 65. No. 7. P. 1100.
- Sánchez-López E., Gomes D., Esteruelas G. et al. // Nanomaterials. 2020. V. 10. Art. No. 292.
- Bose P., Bid S., Pradhan S.K. et al. // J. Alloys Compounds. 2002. V. 343. P. 192.
- Sun S., Murray C.B. // J. Appl. Phys. 1999. V. 85. P. 4325.
- Mathur S., Veith M., Sivakov V. et al. // Chem. Vap. Depos. 2002. V. 8. P. 277.
- Yin J.S., Wang Z.L. // Nanostruct. Mater. 1999. V. 10. P. 845.
- Becker J.A., Schafer R., Festag J.R. et al. // Surf. Rev. Lett. 1996. V. 3. P. 1121.
- Kurlyandskaya G.V., Portnov D.S, Beketov I.V. et al. // Bioch. Biophys. Acta. 2017. V. 1861. P. 1494.
- Blyakhman F.A., Buznikov N.A., Sklyar T.F. et al. // Sensors. 2018. V. 18. Art. No. 872.
- Li X.G., Chiba A., Takahashi S. et al. // Materials. 1997. V. 173. Art. No. 101.
- Beketov I.V., Safronov A.P., Medvedev A.I. et al. // AIP Advances. 2012. V. 2. Art. No. 022154.
- Курляндская Г.В., Архипов А.В., Бекетов И.В. и др. // ФТТ. 2023. Т. 65. № 6. С. 861; Kurlyandskaya G.V., Arkhipov A.V., Beketov I.V. et al. // Phys. Sol. St. 2023. V. 65. No. 6. P. 861.
- Hansen M.F., Vecchio K.S., Parker F.T. et al. // Appl. Phys. Lett. 2003. V. 82. P. 1574.
- Semaltianos N.G., Karczewski G. // ACS Appl. Nano Mater. 2021. V. 4. P. 6407.
- Amendola V., Riello P., Polizzi S. et al. // J. Mater. Chem. 2011. V. 21. P. 18665.
- Zhang H., Liang C., Liu J. et al. // Carbon. 2013. V. 55. P. 108.
- Franzel L., Bertino M.F., Huba Z.J., Carpenter E.E. // Appl. Surf. Sci. 2012. V. 261. P. 332.
- Amendola V., Scaramuzza S., Carraro F., Cattaruzza E. // J. Colloid Interface Sci. 2017. V. 489. P. 18.
- Zograf G.P., Zuev D.A., Milichko V.A. // J. Phys. Conf. Ser. 2016. V. 741. Art. No. 012119.
- Haustrup N., O’Connor G.M. // J. Nanosci. Nanotechnol. 2012. V. 12. No. 11. P. 8656.
- Bubb D.M., O’Malley S.M., Schoeffling J. et al. // Chem. Phys. Lett. 2013. V. 565. P. 65.
- Scaramuzza S., Zerbetto M., Amendola V. // J. Phys. Chem. C. 2016. V. 120. No. 17. P. 9453.
- Александров В.А. // Междунар. научн. журн. Альтернативная энергетика и экология. 2007. № 11. С. 160.
- Matthias E., Reichling M., Siegel J. // Appl. Phys. A. 1994. V. 58. P. 129.
- Perminov P.A., Dzhun I.O., Ezhov A.A. et al. // Laser Phys. 2011. V. 21. No. 4. P. 801.
- Liang J., Liu W., Li Y. et al. // Appl. Surf. Sci. 2018. V. 456. P. 482.
- Zabotnov S.V., Skobelkina A.V., Kashaev F.V. et al. // Sol. St. Phenom. 2020. V. 312. P. 200.
- Петров Ю.И. Кластеры и малые частицы. Москва: Наука, 1986.
- Santillán J.M.J., van Raap M.B.F., Zelis P.M. et al. // J. Nanopart. Res. 2015. V. 17. No. 2. Art. No. 86.
- Santillán J.M.J., Arboleda D.M., Coral D.F. et al. // ChemPhysChem. 2017. V. 18. No. 9. P. 1192.
- Ghaem E.N., Dorranian D., Sari A.H. // Physica E. 2020. V. 115. Art. No. 113670.
- Hu S., Meltonc C., Mukherjee D. // Phys. Chem. Chem. Phys. 2014. V. 16. Art. No. 24034.
- Zhu H.T., Luo J., Liang J.K. et al. // Physica B. 2008. V. 403. P. 3141.
- Makhlouf S.A. // J. Magn. Magn. Mater. 2002. V. 246. P. 184.
- Ghaem E.N., Dorranian D., Sari A.H. // Opt. Quantum Electron. 2021. V. 53. Art. No. 36.
- Svetlichnyi V.A., Shabalina A.V., Lapin I.N. et al. // Appl. Surf. Sci. 2018. V. 462. P. 226.
- Luna C., del Puerto Morales M., Serna C.J., Vázquez M. // Nanotech. 2003. V. 14. P. 268.
- Dutta P., Seehra M.S., Thota S., Kumar J. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 015218.
- Pal A.K., Chaudhuri S., Barua A.K. // J. Phys. D. Appl. Phys. 1976. V. 9. P. 2261.
- Huang H., Zhigilei L.V. // J. Phys. Chem. C. 2021. V. 125. No. 24. P. 13413.
- Inogamov N.A., Zhakhovsky V.V., Petrov Y.V. et al. // Contrib. Plasma Phys. 2013. V. 53. No. 10. P. 796.
- Zhilan L., Xinghai Ch., Jianxiong W. et al. // Mineral. Mag. 2022. V. 6. No. 2. P. 346.
- Lei Z., Chen X., Wang J. et al. // Mineral. Mag. 2022. V. 86. No. 2. P. 346.
- Wang R.-P., Zhou G.-W. Liu Y.-L. et al. // Phys. Rev. B. 2000. V. 61. No. 24. P. 16827.
- Gao Y., Qin Y., Dong C., Li G. // Appl. Surf. Sci. 2014. V. 311. P. 413.
Supplementary files
