Magnetic nanoparticles produced by pulsed laser ablation of thin cobalt films in water

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of synthesizing nanoparticles by pulsed laser ablation of thin cobalt films in water is shown. The average size of the formed nanoparticles varies in the range of 70–1020 nm depending on the thickness of the ablated film. At film thicknesses less than 35 nm, the size dispersion of the nanoparticles

About the authors

I. O. Dzhun

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow, 119991

V. Y. Nesterov

Lomonosov Moscow State University; Moscow Institute of Physics and Technology

Author for correspondence.
Email: nesterovvy@my.msu.ru

Lomonosov Moscow State University, Faculty of Physics

Russian Federation, Moscow, 119991; Dolgoprudny, 141701

D. V. Shuleiko

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

S. V. Zabotnov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

D. Е. Presnov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow, 119991

Yu. A. Alekhina

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

E. A. Konstantinova

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

N. S. Perov

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

N. G. Chechenin

Lomonosov Moscow State University

Email: nesterovvy@my.msu.ru

Skobeltsyn Institute of Nuclear Physics; Faculty of Physics

Russian Federation, Moscow, 119991

References

  1. Lu A.-H., Salabas E.L., Schüth F. // Angew. Chem. Int. Ed. 2007. V. 46. No. 8. P. 1222.
  2. Long N.V., Yang Y., Teranishi T. et al. // Mater. Des. 2015. V. 86. P. 797.
  3. Liu X.Y., Gao Y.Q., Yang G.W. // Nanoscale. 2016. V. 8. P. 4227.
  4. Alonso-Domínguez D.D., Alvarez-Serrano I.I., Pico M.P. // J. Alloys. Compounds. 2017. V. 695. P. 3239.
  5. Blakemore J.D., Gray H.B., Winkler J.R., Mueller A.M. // ACS Catalysis. 2013. V. 3. No. 11. P. 2497.
  6. Li L.H., Xiao J., Liu P., Yang G.W. // Sci. Reports. 2014. V. 5. Art. No. 9028.
  7. Kunitsyna E.I., Allayarov R.S., Koplak O.V. et al. // ACS Sensors. 2021. V. 6. No. 12. P. 4315.
  8. Abdulwahid F.S., Haider A.J., Al-Musawi S. // Nano Rev. 2022. V. 17. No 11. Art. No. 2230007.
  9. Papis E., Rossi F., M. Raspanti M. et al. // Toxic. Lett. 2009. V. 189. P. 253.
  10. Périgo E.A., Hemery G., Sandre O. et al. // Appl. Phys. Rev. 2015. V. 2. Art. No. 41302.
  11. Ichiyanagi Y., Yamada S. // Polyhedron. 2005. V. 24. P. 2813.
  12. Mehdaoui B., Meffre A., Carrey J. et al. // Adv. Funct. Mat. 2011. V. 21. Art. No. 4573.
  13. Usov N.A., Gubanova E.M., Wei Z.H. // J. Phys. Conf. Ser. 2020. V. 1439. Art. No. 012044.
  14. Мельников Г.Ю., Лепаловский В.Н., Сафронов А.П. и др. // ФТТ. 2023. Т. 65. № 7. С. 1100; Melnikov G. Yu, Lepalovskij V.N., Safronov A.P. et al. // Phys. Sol. St. 2023. V. 65. No. 7. P. 1100.
  15. Sánchez-López E., Gomes D., Esteruelas G. et al. // Nanomaterials. 2020. V. 10. Art. No. 292.
  16. Bose P., Bid S., Pradhan S.K. et al. // J. Alloys Compounds. 2002. V. 343. P. 192.
  17. Sun S., Murray C.B. // J. Appl. Phys. 1999. V. 85. P. 4325.
  18. Mathur S., Veith M., Sivakov V. et al. // Chem. Vap. Depos. 2002. V. 8. P. 277.
  19. Yin J.S., Wang Z.L. // Nanostruct. Mater. 1999. V. 10. P. 845.
  20. Becker J.A., Schafer R., Festag J.R. et al. // Surf. Rev. Lett. 1996. V. 3. P. 1121.
  21. Kurlyandskaya G.V., Portnov D.S, Beketov I.V. et al. // Bioch. Biophys. Acta. 2017. V. 1861. P. 1494.
  22. Blyakhman F.A., Buznikov N.A., Sklyar T.F. et al. // Sensors. 2018. V. 18. Art. No. 872.
  23. Li X.G., Chiba A., Takahashi S. et al. // Materials. 1997. V. 173. Art. No. 101.
  24. Beketov I.V., Safronov A.P., Medvedev A.I. et al. // AIP Advances. 2012. V. 2. Art. No. 022154.
  25. Курляндская Г.В., Архипов А.В., Бекетов И.В. и др. // ФТТ. 2023. Т. 65. № 6. С. 861; Kurlyandskaya G.V., Arkhipov A.V., Beketov I.V. et al. // Phys. Sol. St. 2023. V. 65. No. 6. P. 861.
  26. Hansen M.F., Vecchio K.S., Parker F.T. et al. // Appl. Phys. Lett. 2003. V. 82. P. 1574.
  27. Semaltianos N.G., Karczewski G. // ACS Appl. Nano Mater. 2021. V. 4. P. 6407.
  28. Amendola V., Riello P., Polizzi S. et al. // J. Mater. Chem. 2011. V. 21. P. 18665.
  29. Zhang H., Liang C., Liu J. et al. // Carbon. 2013. V. 55. P. 108.
  30. Franzel L., Bertino M.F., Huba Z.J., Carpenter E.E. // Appl. Surf. Sci. 2012. V. 261. P. 332.
  31. Amendola V., Scaramuzza S., Carraro F., Cattaruzza E. // J. Colloid Interface Sci. 2017. V. 489. P. 18.
  32. Zograf G.P., Zuev D.A., Milichko V.A. // J. Phys. Conf. Ser. 2016. V. 741. Art. No. 012119.
  33. Haustrup N., O’Connor G.M. // J. Nanosci. Nanotechnol. 2012. V. 12. No. 11. P. 8656.
  34. Bubb D.M., O’Malley S.M., Schoeffling J. et al. // Chem. Phys. Lett. 2013. V. 565. P. 65.
  35. Scaramuzza S., Zerbetto M., Amendola V. // J. Phys. Chem. C. 2016. V. 120. No. 17. P. 9453.
  36. Александров В.А. // Междунар. научн. журн. Альтернативная энергетика и экология. 2007. № 11. С. 160.
  37. Matthias E., Reichling M., Siegel J. // Appl. Phys. A. 1994. V. 58. P. 129.
  38. Perminov P.A., Dzhun I.O., Ezhov A.A. et al. // Laser Phys. 2011. V. 21. No. 4. P. 801.
  39. Liang J., Liu W., Li Y. et al. // Appl. Surf. Sci. 2018. V. 456. P. 482.
  40. Zabotnov S.V., Skobelkina A.V., Kashaev F.V. et al. // Sol. St. Phenom. 2020. V. 312. P. 200.
  41. Петров Ю.И. Кластеры и малые частицы. Москва: Наука, 1986.
  42. Santillán J.M.J., van Raap M.B.F., Zelis P.M. et al. // J. Nanopart. Res. 2015. V. 17. No. 2. Art. No. 86.
  43. Santillán J.M.J., Arboleda D.M., Coral D.F. et al. // ChemPhysChem. 2017. V. 18. No. 9. P. 1192.
  44. Ghaem E.N., Dorranian D., Sari A.H. // Physica E. 2020. V. 115. Art. No. 113670.
  45. Hu S., Meltonc C., Mukherjee D. // Phys. Chem. Chem. Phys. 2014. V. 16. Art. No. 24034.
  46. Zhu H.T., Luo J., Liang J.K. et al. // Physica B. 2008. V. 403. P. 3141.
  47. Makhlouf S.A. // J. Magn. Magn. Mater. 2002. V. 246. P. 184.
  48. Ghaem E.N., Dorranian D., Sari A.H. // Opt. Quantum Electron. 2021. V. 53. Art. No. 36.
  49. Svetlichnyi V.A., Shabalina A.V., Lapin I.N. et al. // Appl. Surf. Sci. 2018. V. 462. P. 226.
  50. Luna C., del Puerto Morales M., Serna C.J., Vázquez M. // Nanotech. 2003. V. 14. P. 268.
  51. Dutta P., Seehra M.S., Thota S., Kumar J. // J. Phys. Cond. Matter. 2008. V. 20. Art. No. 015218.
  52. Pal A.K., Chaudhuri S., Barua A.K. // J. Phys. D. Appl. Phys. 1976. V. 9. P. 2261.
  53. Huang H., Zhigilei L.V. // J. Phys. Chem. C. 2021. V. 125. No. 24. P. 13413.
  54. Inogamov N.A., Zhakhovsky V.V., Petrov Y.V. et al. // Contrib. Plasma Phys. 2013. V. 53. No. 10. P. 796.
  55. Zhilan L., Xinghai Ch., Jianxiong W. et al. // Mineral. Mag. 2022. V. 6. No. 2. P. 346.
  56. Lei Z., Chen X., Wang J. et al. // Mineral. Mag. 2022. V. 86. No. 2. P. 346.
  57. Wang R.-P., Zhou G.-W. Liu Y.-L. et al. // Phys. Rev. B. 2000. V. 61. No. 24. P. 16827.
  58. Gao Y., Qin Y., Dong C., Li G. // Appl. Surf. Sci. 2014. V. 311. P. 413.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».