The process of electrolyte-plasma cathode exfoliation of graphite
- Authors: Grushevski E.A.1, Savinski N.G.1, Bachurin V.I.1
-
Affiliations:
- Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Yaroslavl Branch
- Issue: Vol 88, No 4 (2024)
- Pages: 572-576
- Section: Ion-Surface Interactions
- URL: https://journals.rcsi.science/0367-6765/article/view/271432
- DOI: https://doi.org/10.31857/S0367676524040073
- EDN: https://elibrary.ru/QIJUUS
- ID: 271432
Cite item
Abstract
We discussed the development of cathodic electrochemical exfoliation of graphite, accompanied by a plasma discharge with a voltage of 200V DC, in an aqueous solution of various electrolytes. The method of cathodic electrochemical exfoliation of graphite has established itself as a promising eco-friendly industrial method for producing nanographite with subsequent grinding by ultrasound into low-layer graphene (FLG). Cathodic exfoliation allows selective doping of nanographite oxygen atoms.
About the authors
E. A. Grushevski
Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Yaroslavl Branch
Email: vibachurin@mail.ru
Russian Federation, Yaroslavl, 150007
N. G. Savinski
Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Yaroslavl Branch
Email: vibachurin@mail.ru
Russian Federation, Yaroslavl, 150007
V. I. Bachurin
Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Yaroslavl Branch
Author for correspondence.
Email: vibachurin@mail.ru
Russian Federation, Yaroslavl, 150007
References
- Асадов М.М., Мустафаева С.Н., Гусейнова С.С., Лукичев В.Ф. // Микроэлектроника. 2022. Т. 51. № 2. С. 125; Asadov M.M., Mustafaeva S.N., Guseinova S.S. et al. // Russ. Microelectron. 2022. V. 51. No 2. P. 83.
- Hu Y., Sun X.// In: Advances in graphene science. M.: Intech Open, 2013. 177 p.
- Choi C.H., Chung M.W., Kwon H.C. et al. // J. Mater. Chem. A. 2013. V. 11. No. 1. P. 3694.
- Wang Z., Zhou X., Zhang J. // J. Phys. Chem. C. 2009. V. 113. No. 32. P. 14071.
- Grushevski E., Savelev D., Mazaletski L. et al. // J. Phys. Conf. Ser. 2021. V. 2086. Art. No. 012014.
- Савинский Н.Г., Мелесов Н.С., Паршин Е.О. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 6. С. 887; Savinsky N.G., Melesov N.S., Parshin E.O. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 6. P. 732.
- Савельев Д.Н., Грушевский Е.А., Савинский Н.Г. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 666; Savelyev D.N., Grushevski E.A., Savinski N.G. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 667.
- Соловьев М.Е., Раухваргер А.Б., Савинский Н.Г., Иржак В.И. // ЖОХ. 2017. Т. 87. № 4. С. 677; Solov’ev M.E., Raukhvarger A.B., Savinski N.G., Irzhak V.I. //Russ. J. Gen. Chem. 2017. V. 87. No. 4. P. 805.
- Andrianova N.N., Anikin V.A., Borisov A.M. et al. // J. Phys. Conf. Ser. 2019. V. 1313. Art. No. 012001.
- Andrianova N.N., Borisov A.M., Kazakov V.A. et al. // J. Surf. Inv. 2019. V. 13. No. 5. P. 802.
- Komarova N., Konev D., Kotkin A., Kochergin V. et al. // Mendeleev Commun. 2020. No. 30. P. 472.
- Siahkalroudi Z., Aghabarari B., Vaezi M. et al. // Molec. Catalysis. 2021. V. 502. No. 2. Art. No. 111372.
Supplementary files
