Broadband rectification of microwave current in magnetic tunnel junctions with perpendicular magnetic anisotropy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We experimentally studied the effect of broadband rectification of microwave current in magnetic tunnel junctions with perpendicular magnetic anisotropy with using the method of spin-transfer ferromagnetic resonance in a planar external magnetic field. It was found that the parameters of broadband rectification (frequency range, rectified voltage value and the region of existence of the ferromagnetic resonance mode) depend on the size of the sample and its shape. The maximum value of the rectified voltage was on a round elliptical sample of 100×150 nm. At the same time, the widest operating frequency range of approximately 2 GHz was observed on strongly elliptical MTJs with the size of 75×250 nm.

About the authors

K. V. Kiseleva

New Spintronic Technologies LLC; Skolkovo Institute of Science and Technology (Skoltech)

Author for correspondence.
Email: kseniia.kiseleva@skoltech.ru

Russian Quantum Center

Russian Federation, Skolkovo; Skolkovo

G. A. Kichin

New Spintronic Technologies LLC

Email: kseniia.kiseleva@skoltech.ru

Russian Quantum Center

Russian Federation, Skolkovo

P. N. Skirdkov

New Spintronic Technologies LLC; Prokhorov General Physics Institute of the Russian Academy of Science

Email: kseniia.kiseleva@skoltech.ru

Russian Quantum Center

Russian Federation, Skolkovo; Moscow

K. A. Zvezdin

New Spintronic Technologies LLC; Prokhorov General Physics Institute of the Russian Academy of Science

Email: kseniia.kiseleva@skoltech.ru
Russian Federation, Skolkovo; Moscow

References

  1. Tulapurkar A., Suzuki Y., Fukushima A. et al. // Nature. 2005. V. 438. No. 7066. P. 339.
  2. Fang B., Carpentieri M., Hao X. et al. // Nature Commun. 2016. V. 7. Art. No. 11259.
  3. Zhang L., Fang B., Cai J. et al. // Appl. Phys. Lett. 2018. V. 113. Art. No. 102401.
  4. Wang C., Cui Y.-T., Sun J.Z. et al. // J. Appl. Phys. 2009. V. 106. Art. No. 053905.
  5. Buzdakov A.G., Skirdkov P.N., Zvezdin K.A. // J. Physics D. Appl. Phys. 2022. V. 55. No. 11. Art. No. 115001.
  6. Prokopenko O., Krivorotov I.N., Bankowski E. et al. // J. Appl. Phys. 2012. V. 111. Art. No. 123904.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies