Simulation of electron-optical system for 300 GHz relativistic gyrotron

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Calculations were made for a three-electrode magnetron-injector gun with a thermionic cathode for a relativistic gyrotron in the 300 GHz range, which provides the formation of a helical beam with an energy of 250 keV, a current of 100—300 A, and a pitch factor of 1.1. The possibility of generating radiation with a power of more than 8 MW in a gyrotron with a longitudinally slotted cavity has been shown within the framework of three-dimensional PIC-simulations.

About the authors

Yu. Yu. Danilov

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

A. N. Leontyev

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Author for correspondence.
Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

A. M. Malkin

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

O. P. Plankin

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

R. M. Rozental

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

E. S. Semenov

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

References

  1. Hu L., Song R., Ma G. et al. // IEEE Trans. Electron Devices. 2018. V. 65. No. 6. P. 2149.
  2. Wang J., Wang G., Wang D. et al. // Sci. Reports. 2018. V. 8. No. 1. P. 1.
  3. Arzhannikov A.V., Sinitsky S.L., Popov S.S. et al. // IEEE Trans. Plasma Sci. 2022. V. 50. No. 8. P. 2348.
  4. Глявин М.Ю., Лучинин А.Г., Богдашов А.А. и др. // Изв. вузов. Радиофизика. 2013. Т. 56. № 8. С. 550.
  5. Mondal D., Yuvaraj S., Rawat M. et al. // IEEE Trans. Electron Devices. 2022. V. 69. No. 3. P. 1442.
  6. Rozental R.M., Danilov Yu.Yu., Leontyev A.N. et al. // IEEE Trans. Electron Devices. 2022. V. 69. No. 3. P. 1451.
  7. Zaitsev N.I., Ginzburg N.S., Ilyakov E.V. et al. // IEEE Trans. Plasma Sci. 2002. V. 30. No. 3. P. 840.
  8. Зайцев Н.И., Завольский Н.А., Запевалов В.Е. и др. // Изв. вузов. Радиофизика. 2003. Т. 46. № 10. С. 914.
  9. Abubakirov E.B., Chirkov A.V., Denisov G.G. et al. // IEEE Trans. Electron Devices. V. 64. No. 4. P. 1865.
  10. Планкин О.П., Семенов Е.С. // Вестн. НГУ. Сер. физ. 2013. Т. 8. № 2. С. 44.
  11. Семенов Е.С., Планкин О.П., Розенталь Р.М. // Изв. вузов “ПНД”. 2015. Т. 23. № 3. С. 94.
  12. Danilov Yu.Yu., Leontyev A.N., Leontyev N.V. et al. // IEEE Trans. Electron Dev. 2021. V. 68. No. 4. P. 2130.
  13. Харвей А.Ф. Техника сверхвысоких частот. Т. 1. М.: Советское радио, 1965. 784 с.
  14. Ваганов Р.Б., Матвеев Р.Ф., Мериакри В.В. Многоволновые волноводы со случайными нерегулярностями. М.: Советское радио, 1972. 232 с.
  15. Tarakanov V.P. // EPJ Web Conf. 2017. V. 149. Art. No. 04024.
  16. Rozental R.M., Danilov Yu.Yu., Leontyev A.N. // J. Infrared Millimeter. Terahertz Waves. 2022. V. 43. No. 8. P. 654.
  17. Rozental R.M., Tarakanov V.P. // J. Infrared Millimeter. Terahertz Waves. 2022. V. 43. No. 6. P. 479.
  18. Власов С.Н., Жислин Г.М., Орлова И.М. и др. // Изв. вузов. Радиофизика. 1969. Т. 12. № 8. С. 1236.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies