Simulation of noble metal nanocluster systems formation during deposition from a colloid solution

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A model was proposed for the convective flow of the liquid phase of a colloidal solution of glycerol and noble metal nanoparticles (Ag, Au, Ag/Au) near the substrate. The diffusion approximation is used to describe the formation of nanocluster systems on a substrate. The diffusion-limited aggregation model was implemented by applying a cellular automaton in the Neumann neighborhood. A diverse structure of model systems of nanoclusters, which adequately describes the structural features of the experimental samples, was obtained by varying the aggregation probability parameter. The proposed models can be useful for calibrating the parameters of the experimental production of systems of noble metal nanoclusters, as well as describing in the first approximation the processes that have a decisive effect on nanocluster structures.

Авторлар туралы

D. Bukharov

Vladimir State University

Хат алмасуға жауапты Автор.
Email: buharovdn@gmail.com
Russia, 600000, Vladimir

A. Osipov

Vladimir State University

Email: buharovdn@gmail.com
Russia, 600000, Vladimir

A. Kucherik

Vladimir State University

Email: buharovdn@gmail.com
Russia, 600000, Vladimir

S. Arakelian

Vladimir State University

Email: buharovdn@gmail.com
Russia, 600000, Vladimir

Әдебиет тізімі

  1. Аракелян С.М., Бухаров Д.Н., Кучерик А.О., Худайберганов Т.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 6. С. 834; Arakelian S.M., Bukharov D.N., Kucherik A.O., Khudaiberganov T.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 6. P. 701.
  2. Гулякович Г.Н., Северцев В.Н., Шурчков И.О. // Инж. вестн. Дона. 2012. Т. 2. № 20. С. 315.
  3. Антипов А.А., Аракелян С.М., Кутровская С.В. и др. // Изв. РАН. Сер. физ. 2012. Т. 76. № 6. С. 690; Antipov A.A., Arakelyan S.M., Kutrovskaya S.V. et al. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. No. 6. P. 611.
  4. Антипов А.А., Аракелян С.М., Бухаров Д.Н. и др. // Хим. физ. и мезоскоп. 2012. Т. 14. № 3. С. 401.
  5. Kucherik A.O., Arakelyan S.M., Kutrovskaya S.V. et al. // J. Nanomaterials. 2017. V. 2017. Art. No. 8068560.
  6. Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде MATLAB. М.: Техносфера, 2006. 616 с.
  7. Gonzato G.A. // Comput. Geosci. 1998. V. 24. P. 95.
  8. Рыжикова Ю.В., Рыжиков С.Б. // Учен. зап. физ. фак-та Моск. ун-та. 2018. № 5. С. 1850401.
  9. Самарский А.А., Вабищевич П.Н. Вычислительная теплопередача. М.: URSS, 2020. 784 с.
  10. Роуч П. Вычислительная гидродинамика. М.: Мир, 1980. 618 с.
  11. Самарский А.А. Теория разностных схем. М.: Наука, 1977. 656 с.
  12. Kucherik, A., Samyshkin V., Prusov E. et al. // Nanomaterials. 2021. V. 11. No. 4. P. 1043.
  13. Bukharov D.N., Arakelyan S.M., Kucherik A.O. et al. // J. Phys. Conf. Ser. 2020. V. 1439. Art. No. 012050.
  14. Mroczka J., Woźniak M., Onofri F.R.A. // Metrol. Meas. Syst. 2012. V. 19. No. 3. P. 459.
  15. Zaitsev D.A. // Theor. Comp. Sci. 2017. V. 666. P. 21.
  16. Vakili S., Steinbach I., Varnik F. // Proc. Comput. Sci. 2017. V. 108. P. 1852.
  17. Гурин А.М., Ковалев О.Б. // Теплофиз. и аэромех. 2013. Т. 20. № 2. С. 229.16
  18. Гладуш Г.Г., Дробязко С.В., Лиханский В.В. и др. // Квант. электрон. 1998. Т. 25. № 5. С. 439.

Қосымша файлдар


© Д.Н. Бухаров, А.В. Осипов, А.О. Кучерик, С.М. Аракелян, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>