The problem of description of relaxation modes in the dielectric spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of a model choice for description of broad absorption–dispersion relaxation bands in the dielectric spectroscopy is discussed. An example of the spectra processing difficulty negotiation by replacing the Debye relaxation with the overdamped Lorentzian is given.

About the authors

A. A. Volkov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: MirrorMan@yandex.ru
Russia, 119991, Moscow

S. V. Chuchupal

Prokhorov General Physics Institute of the Russian Academy of Sciences

Author for correspondence.
Email: MirrorMan@yandex.ru
Russia, 119991, Moscow

References

  1. Kremer F., Schönhals A. Broadband dielectric spectroscopy. Berlin: Springer, 2003. 750 p.
  2. Kaatze U. // Meas. Sci. Technol. 2013. V. 24. No. 1. Art. No. 012005.
  3. Dissado L. // In: Springer handbook of electronic and photonic materials. Cham: Springer International Publishing AG, 2017. P. 219.
  4. Woodward W.H.H. // In: Broadband dielectric spectroscopy: a modern analytical technique. Washington: Amer. Chem. Soc., 2021. P. 3.
  5. Fröhlich H. // Trans. Faraday Soc. 1946. V. 42. Art. No. A003.
  6. Cochran W. // Adv. Phys. 1960. V. 9. No. 36. P. 387.
  7. Huber D.L., Van Vleck J.H. // Rev. Mod. Phys. 1966. V. 38. No. 1. P. 187.
  8. Silverman B.D. // Phys. Rev. B. 1974. V. 9. No. 1. P. 203.
  9. Barker A.S. Jr. // Phys. Rev. B. 1975. V. 12. No. 10. P. 4071.
  10. Dieterich W., Fulde P., Peschel I. // Adv. Phys. 1980. V. 29. No. 3. P. 527.
  11. Jonscher A.K. // J. Physics D. 1999. V. 32. No. 14. P. R57.
  12. Dyre J.C., Schrøder T.B. // Rev. Mod. Phys. 2000. V. 72. No. 3. P. 873.
  13. Buixaderas E., Kamba S., Petzelt J. // Ferroelectrics. 2004. V. 308. No. 1. P. 131.
  14. Petzelt J., Kozlov G.V., Volkov A.A. // Ferroelectrics. 1987. V. 73. No. 1. P. 101.
  15. Kozlov G., Volkov A. // Top. Appl. Phys. 1998. V. 74. P. 51.
  16. Волков А.А., Прохоров А.С. // Изв. вузов. Радиофиз. 2003. Т. 46. № 8–9. С. 732; Volkov A.A., Prokhorov A.S. // Radiophys. Quantum Electron. 2003. V. 46. No. 8–9. P. 657.
  17. Nielsen O.F. // Annu. Rep. Prog. Chem. C. 1993. V. 90. P. 3.
  18. Bellissent-Funel M.-C., Teixeira J. // J. Mol. Struct. 1991. V. 250. No. 2–4. P. 213.
  19. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Том VIII. Электродинамика сплошных сред. 2-е изд. М.: Наука, 1982. 621 с.
  20. Kaatze U., Feldman Y. // Meas. Sci. Technol. 2006. V. 17. No. 2. P. R17.
  21. Туров Е.А. Материальные уравнения электродинамики. М.: Наука, 1983. 158 с.
  22. Elton D.C. // Phys. Chem. Chem. Phys. 2017. V. 19. No. 28. P. 18739.
  23. Shiraga K., Tanaka K., Arikawa T. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. No. 41. P. 26200.
  24. Del Valle J.C., Aragó C., Marqués M.I., Gonzalo J.A. // Ferroelectrics. 2014. V. 466. No. 1. P. 166.
  25. Atkins P., de Paula J. Physical Chemistry. 8th ed. N.Y.: OUP, 2006. 1072 p.
  26. Ellison W.J. // J. Phys. Chem. Ref. Data. 2007. V. 36. No. 1. P. 1.
  27. Querry M.R., Wieliczka D.M., Segelstein D.J. // In: Handbook of optical constants of solids II. San Diego: Academic Press, 1998. P. 1059.
  28. Васин А.А., Волков А.А. // ЖТФ. 2020. Т. 65. № 9. С. 1470; Vasin A.A., Volkov A.A. // Tech. Phys. 2020. V. 65. No. 9. P. 1411.
  29. Volkov A.A., Chuchupal S.V. // J. Mol. Liq. 2022. V. 365. Art. No. 120044.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (144KB)
3.

Download (68KB)

Copyright (c) 2023 А.А. Волков, С.В. Чучупал

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies