Study of the effect of cation substitution on the formation of microcracks in Ni-rich layered oxides

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The formation of microcracks in agglomerated particles of positive electrode (cathode) material based on Ni-enriched layered oxide LiNi0.6Mn0.2Co0.2O2 has been studied using transmission electron microscopy. The influence of magnesium cations as a doping additive on the stability of the material to the accumulation of structural defects and the formation of cracks during long-term galvanostatic cycling is demonstrated, and a mechanism for stress relaxation is proposed.

作者简介

I. Moiseev

Skolkovo Institute of Science and Technology

Email: a.abakumov@skoltech.ru
Russia, 121205, Moscow

А. Golubnichiy

Skolkovo Institute of Science and Technology

Email: a.abakumov@skoltech.ru
Russia, 121205, Moscow

А. Pavlova

Skolkovo Institute of Science and Technology

Email: a.abakumov@skoltech.ru
Russia, 121205, Moscow

А. Abakumov

Skolkovo Institute of Science and Technology

编辑信件的主要联系方式.
Email: a.abakumov@skoltech.ru
Russia, 121205, Moscow

参考

  1. Ming J., Danilov D.L., Rüdiger-A.E., Notten P.H.L. // Adv. Energy Mater. 2021. V. 11. No. 48. Art. No. 2103005.
  2. Hausbrand R., Cherkashinin G., Ehrenberg H. et al. // Mater. Sci. Engin. B. 2015. V. 192. P. 3.
  3. Li W., Dolocan A., Oh P., Celio H. et al. // Nature Commun. 2017. V. 8. P. 14589.
  4. Li W., Kim U.-H., Dolocan A. et al. // ACS Nano. 2017. V. 11. P. 5863.
  5. Zhan C., Wu T., Lu J., Amine K. // Energy Environ. Sci. 2018. V. 11. P. 243.
  6. Jung R., Metzger M., Maglia F. et al. // J. Electrochem. Soc. 2017. V. 164. Art. No. A1377.
  7. Zhang H., May B.M., Serrano-Sevillano J. et al. // Chem. Mater. 2018. V. 30. P. 699.
  8. Lin Q., Guan W., Meng J. et al. // Nano Energy. 2018. V. 54. No. 12. P. 321.
  9. Li J., Manthiram A. // Adv. Energy Mater. 2019. V. 9. No. 45. Art. No. 1902731.
  10. Yan P., Zheng J., Gu M. et al. // Nature Commun. 2017. V. 8. Art. No. 14101.
  11. Sun H., Zhao K. // J. Phys. Chem. C. 2017. V. 121. P. 6002.
  12. Zhang S.S. // E. Store. Mat. 2020. V. 24. P. 247.
  13. Mao Y., Wang X., Xia S. et al. // Adv. Funct. Mater. 2019. V. 29. P. 18.
  14. Li J., Downie L.E., Ma L. et al. // J. Electrochem. Soc. 2015. V. 162. Art. No. A1401.
  15. Zhang S.S. // J. Energy Chem. 2020. V. 41. No. 2. P. 135.
  16. Yoon C.S., Dun D.W., Myung S.T., Sun Y.K. // ACS Energy Lett. 2017. V. 2. P. 1150.
  17. Ryu H.H., Park K.J., Yoon C.S., Sun Y.K. // Chem. Mater. 2018. V. 30. P. 1155.
  18. Bi Y., Tao J., Wu Y. et al. // Science. 2020. V. 370. P. 1313.
  19. Kim H., Kim M.G., Jeong H.Y. et al. // Nano Lett. 2015. V. 15. No. 3. P. 2111.
  20. Yan P., Zheng J., Gu M. et al. // Nature Commun. 2017. V. 8. Art. No. 14101.
  21. Zhu J., Chen G. // J. Mater. Chem. A. 2019. V. 7. P. 5463.
  22. Delmas C., Fouassier C., Hagenmuller P. // Physica B + C. 1980. V. 99. No. 1–4. P. 81.
  23. Perovic D.D., Rossouw C.J., Howie A. // Ultramicroscopy. 1993. V. 52. P. 353.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (4MB)
3.

下载 (2MB)
4.

下载 (2MB)

版权所有 © И.А. Моисеев, А.А. Голубничий, А.П. Павлова, А.М. Абакумов, 2023

##common.cookie##