Carbon nanoparticle identification using transmission electron microscopy methods in biological samples

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Carbon nanoparticles are a common type of nanoparticles, the identification of which in biological samples is associated with great difficulties. It is demonstrated that the use of standard transmission electron microscopy in combination with the electron diffraction method is a reliable and relevant tool for the carbon nanoparticles identification in biological samples.

About the authors

A. G. Masyutin

Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University; Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute

Author for correspondence.
Email: squiggoth@yandex.ru
Russia, 119234, Moscow; Russia, 107564, Moscow

E. K. Tarasova

Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute

Email: squiggoth@yandex.ru
Russia, 107564, Moscow

G. E. Onishchenko

Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University

Email: squiggoth@yandex.ru
Russia, 119234, Moscow

M. V. Erokhina

Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University; Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute

Email: squiggoth@yandex.ru
Russia, 119234, Moscow; Russia, 107564, Moscow

References

  1. Simakov S.K. // Geosci. Front. 2018. V. 9. No. 6. P. 1849.
  2. Notarianni M., Liu J., Vernon K. et al. // Beilstein J. Nanotechnol. 2016. V. 7. P. 149.
  3. Bandlapalli C., SreeGaddam H.U., Chintmaneni P.K. et al. // Saudi J. Med. Pharm. Sci. 2021. V. 7. No. 8. P. 395.
  4. Suzuki S., Mori S. // J. Air Waste Manag. Assoc. 2017. V. 67. No. 8. P. 873.
  5. Losacco C., Perillo A. // Environ. Sci. Pollut. Res. 2018. V. 25. Art. No. 33901.
  6. Strojny B., Kurantowicz N., Sawosz E. et al. // PLoS ONE. 2015. V. 10. No. 12. Art. No. e0144821.
  7. Glaeser R.M., Gareth T. // Biophys. J. 1969. V. 9. No. 9. P. 1073.
  8. Yuan X., Zhang X., Sun L. et al. // Part. Fibre Toxicol. 2019. V. 1. No. 16. P. 18.
  9. Malatesta M. // Int. J. Mol. Sci. 2021. V. 22. P. 12789.
  10. Mühlfeld C., Rothen-Rutishauser B., Vanhecke D. et al. // Part. Fibre Toxicol. 2007. V. 4. Art. No. 11.
  11. Kurynina A.V., Erokhina M.V., Makarevich O.A. et al. // Biochem. 2018. V. 83. No. 3. P. 200.
  12. Кирпичников М.П. Порядок выявления и идентификации агрегатов многостенных углеродных нанотрубок в срезах тканей животных и растений методами аналитической электронной микроскопии: Методические рекомендации МР 1.2.0045-11. М.: ФЦГиЭ Роспотребнадзора, 2012. с. 39.
  13. Reynolds E.S. // J. Cell Biol. 1963. V. 1. No. 17. P. 208.
  14. Sasaki H., Arai H., Kikuchi E. et al. // Sci. Reports. 2022. V. 12. No. 1. P. 7756.
  15. Yildirimer L., Thanh N.T.K., Loizidou M. et al. // Nano Today. 2011. V. 6. No. 6. P. 585.
  16. Joshi A., Kaur S., Singh P. et al. // Appl. Nanosci. 2018. V. 6. No. 8. P. 1399.
  17. Nagaraju K., Reddy R., Reddy N. // J. Appl. Biomater. Funct. Mater. 2015. V. 4. No. 13. Art. No. e301-12.
  18. Coméra C., Cartier C., Gaultier E. et al. // Part. Fibre Toxicol. 2020. V. 1. No. 17. P. 26.
  19. Shebanova A. S., Bogdanov A.G., Ismagulova T.T. et al. // Biophysics. 2014. V. 2. No. 59. P. 284.
  20. Gass M., Porter A., Bendall J. et al. // Ultramicroscopy. 2009. No. 110. P. 946.
  21. Snyder-Talkington B.N., Schwegler-Berry D., Castranova V. et al. // Part. Fibre Toxicol. 2013. V. 10. P. 35.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (3MB)
4.

Download (2MB)
5.

Download (1MB)

Copyright (c) 2023 А.Г. Масютин, Е.К. Тарасова, Г.Е. Онищенко, М.В. Ерохина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies