Electron-microscopic study of phase transformations in 316L austenitic steel manufactured by laser 3D printing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied the structure and phases in porous samples of 316L austenitic steel manufactured by laser 3D printing. Transmission electron microscopy revealed the presence of residual δ-ferrite along with austenite in the sample. A high density of dislocations is also observed in the sample. EBSD analysis revealed a lack of texture.

About the authors

N. V. Kazantseva

Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences; Ural State University of Railway Transport

Author for correspondence.
Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg; Russia, 620034, Ekaterinburg

N. I. Vinogradova

Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences

Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg

Yu. N. Koemets

Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences

Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg

I. V. Ezhov

Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences

Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg

D. I. Davidov

Institute of Metal Physics of the Ural branch of the Russian Academy of Sciences; Ural State University of Railway Transport

Email: Kazantseva-11@mail.ru
Russia, 620108, Yekaterinburg; Russia, 620034, Ekaterinburg

References

  1. Баранникова С.А., Никонова A.M., Колосов С.В. // Вест. ПНИПУ. Мех. 2021. № 1. С. 22.
  2. Shrinivas V., Varma S.K., Murr L.E. // Metall. Mater. Trans. A. 1995. V. 26A. P. 661.
  3. Tucho W.M., Lysne V.H., Austbø H. et al. // J. Alloys Compounds. 2018. V. 740. P. 910.
  4. Solomon N., Solomon I. // Rev. Metal. 2010. V. 46. No. 2. P. 121.
  5. Meszaros I., Prohaszka J. // J. Mater. Process. Technol. 2005. V. 161. P. 162.
  6. Nalepka K., Skocze B., Ciepielowska M. et al. // Materials. 2021. V. 14. P. 127.
  7. Gradzka-Dahlke M., Waliszewski J. // Defect Diffus. Forum. 2009. V. 283. P. 285.
  8. Vock S., Klöden B., Kirchner A. et al. // Progr. Add. Manufact. 2019. V. 4. P. 383.
  9. Bartolomeu F., Buciumeanu M., Pinto E. et al. // Add. Manufact. 2017. V. 16. P. 81.
  10. Bajaj P., Hariharan A., KiniA. et al. // Mater. Sci. Engin. A. 2020. V. 772. Art. No. 138633.
  11. Zhongji Sun, Xipeng Tan, Shu Beng Tor, Wai Yee Yeong // Mater. Design. 2016. V. 104. P. 197.
  12. Krakhmalev P., Fredriksson G., Svensson K. et al. // Metals. 2018. V. 8. Art. No. 643.
  13. Tucho W.M., Lysne V.H., Austbo H. et al. // J. Alloys Compounds. 2018. V. 740. P. 910.
  14. Lo K.H. // Mater. Sci. Engin. R. 2009. V. 65. P. 39.
  15. Saluja R., Moeed K. // Int. J. Engin. Sci. Technol. 2012. V. 4. № 5. P. 2206.
  16. Fofanov D., Riedner S. // Proc. 2011 SSW Conf. Exhib. (Maastricht, 2011). P. 1.
  17. Andreaua O., Koutiri I., Patrice Peyre P. et al. // J. Mater. Proc. Tech. 2019. V. 264. P. 21.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (2MB)
4.

Download (2MB)

Copyright (c) 2023 Н.В. Казанцева, Н.И. Виноградова, Ю.Н. Коэмец, И.В. Ежов, Д.И. Давыдов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies