The effect of a static magnetic field on the low-frequency dielectric permittivity of nominally pure and Co2+ ions doped triglycine sulfate crystals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of a weak static magnetic field on the low-frequency dielectric permittivity of the crystals of nominally pure triglycine sulfate (TGS): and TGS containing cobalt ions (TGS + Co2+) is investigated. In TGS, the magnetic effect is essentially anisotropic: it is completely absent when the vectors \(\vec {B}\) and \({{\vec {P}}_{{\text{s}}}}\) are collinear and is most pronounced when \(\vec {B} \bot {{\vec {P}}_{{\text{s}}}}\) and the magnetic field is oriented along the crystallophysical axis \(\vec {a}\). In TGS + Co2+ magnetic effect is noticeably stronger than in TGS, but practically does not depend on the mutual orientation of vectors \(\vec {B}\) and \({{\vec {P}}_{{\text{s}}}}\).

About the authors

O. M. Golitsyna

Voronezh State University

Author for correspondence.
Email: golitsynaom@yandex.ru
Russia, 394026, Voronezh

S. N. Drozhdin

Voronezh State University

Email: golitsynaom@yandex.ru
Russia, 394026, Voronezh

References

  1. Левин М.Н., Постников В.В., Палагин М.Ю. // ФТТ. 2003. Т. 45. № 9. С. 1680; Levin M.N., Postnikov V.V., Palagin M.Yu. // Phys. Solid State. 2003. V. 45. No. 9. P. 1763.
  2. Якушкин Е.Д. // Письма в ЖЭТФ. 2014. Т. 99. № 7. С. 415; Yakushkin E.D. // JETP Lett. 2014. V. 99. No. 7. P. 415.
  3. Иванова Е.С., Румянцев И.Д., Петржик Е.А. // ФТТ. 2016. Т. 58. № 1. С. 125; Ivanova E.S., Rumyantsev I.D., Petrzhik E.A. // Phys. Solid State. 2016. V. 58. No. 1. P.127.
  4. Golitsyna O.M., Drozhdin S.N. // Ferroelectrics. 2020. V. 567. No. 1. P. 244.
  5. Головин Ю.И. // ФТТ. 2004. Т. 46. № 5. С. 769; Golovin Yu.I. // Phys. Solid State. 2004. V. 46. No. 5. P. 789.
  6. Моргунов Р.Б. // УФН. 2004. Т. 174. № 2. С. 131; Morgunov R.B. // Phys. Usp. 2004. V. 47. No. 2. P. 125.
  7. Гайнутдинов Р.В., Иванова Е.С., Петржик Е.А. и др. // Письма в ЖЭТФ. 2017. Т. 106. № 2. С. 84; Gainutdinov R.V., Ivanova E.S., Petrzhik E.A. et al. // JETP Lett. 2017. V. 106. No. 2. P. 97.
  8. Новик В.К., Лотонов А.М., Гаврилова Н.Д. // ФТТ. 2009. Т. 51. № 7. С. 1338; Novik V.K., Lotonov A.M., Gavrilova N.D. // Phys. Solid State. 2009. V. 51. No. 7. P. 1414.
  9. Лысаков В.С. // Вестник ОГУ. 2009. № 9. С. 155.
  10. Дрождин С.Н., Голицына О.М. // ФТТ. 2012. Т. 54. № 6. С. 853; Drozhdin S.N., Golitsyna O.M. // Phys. Solid State. 2012. V. 54. No. 6. P. 905.
  11. Golitsyna O.M., Drozhdin S.N., Grechkina M.N. et al. // Ferroelectrics. 2017. V. 506. No. 1. P. 127.
  12. Виндш В. // Изв. АН СССР. Сер. физ. 1975. Т. 39. № 5. С. 914.
  13. Wartewig S., Volkel G., Windsch W. // Ferroelectrics. 1978. V. 19. P. 131.
  14. Цедрик М.С. Физические свойства кристаллов семейства триглицинсульфата (в зависимости от условий выращивания). Минск: Наука и техника, 1986. 216 с.
  15. Gaffar M.A., Al-Houtyi L.I., Al-Muraikhit M., Mohamed A.A. // J. Physics C. 1988. V. 21. P. 1821.
  16. Prokopová L., Mièka Z., Novotný J., Malina V. // Mater. Structure. 2000. V. 7. No. 2. P. 67.
  17. Peterková J., Podlahová J., Loub J., Mièka Z. // Acta Cryst. C. 1991. V. 47. P. 2664.
  18. Fleck M., Bohaty L. // Acta Crystallogr. 2006. V. C62. P. M22.
  19. Tepavitcharova S., Rabadjieva D., Havlíček D. et al. // J. Mol. Struct. 2012. V.1018. P.113.
  20. Atzori M., Train C., Hillard E.A. et al. // Chirality. 2021. V. 33. P. 844.
  21. Rikken G.L.J.A., Avarvari N. // Nature Commun. 2022. V. 13. P. 3564.
  22. Rikken G.L.J.A., Avarvari N. // Phys. Rev. B. 2022. V. 106. Art. No. 224307.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (175KB)
3.

Download (202KB)
4.

Download (164KB)
5.

Download (207KB)
6.

Download (159KB)

Copyright (c) 2023 О.М. Голицына, С.Н. Дрождин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies