Modern technologies to produce radionuclides for nuclear medicine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We discussed nuclear technologies to produce radioactive isotopes, with a focus on radionuclides used as radiopharmaceuticals in novel methods of cancer diagnosis and radionuclide therapy—theranostics. New target materials and nuclear reactions to produce these radionuclides were considered. The experimental and theoretical results of excitation functions of reactions (p, xn) studies in energy range 6–80 MeV for medium mass nuclear systems to produce radionuclides: scandium, technetium, antimony, terbium are presented. These radionuclides are promising for their use in nuclear medicine methods for diagnostics, therapy and theranostics.

About the authors

V. I. Zherebchevsky

Saint Petersburg State University

Author for correspondence.
Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

I. E. Alekseev

Khlopin Radium Institute

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

N. A. Maltsev

Saint Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

V. V. Petrov

Saint Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

N. A. Prokofiev

Saint Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

E. O. Zemlin

Saint Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

S. Yu. Torilov

Saint Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

References

  1. https://www.who.int/news-room/fact-sheets/detail/ cancer.
  2. Жеребчевский В.И. // СПбГУ. 2020. № 6(3926). С. 29.
  3. Sharp P.F., Gemmell H.G., Murray A.D. Practical nuclear medicine. 3rd ed. London: Springer-Verlag, 2005. 382 p.
  4. Volterrani D., Erba P.A., Carrió I. et al. Nuclear medicine: methodology and clinical applications. V. 1. Springer, 2019. 1331 p.
  5. Жеребчевский В.И., Алексеев И.Е., Лазарева Т.В. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 10. С. 1452; Zherebchevsky V.I., Alekseev I.E., Lazareva T.V. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 10. P. 1128.
  6. Zherebchevsky V., Alekseev I., Krymov E. et al. // Proc. LXX Intern. Conf. “NUCLEUS-2020” (Saint-Petersburg, 2020). P. 9.
  7. Zherebchevsky V., Alekseev I., Lazareva T. et al. // Proc. LXXI Intern. Conf. “NUCLEUS-2021” (Saint Petersburg, 2021). P. 13.
  8. Zherebchevsky V., Alekseev I., Feofilov G. et al. // Proc. LXXII Intern. Conf. “NUCLEUS-2022” (Moscow, 2022). P. 33.
  9. Conti M., Bendriem B. // Clin. Transl. Imaging. 2019. V. 7. P. 139.
  10. Lang C., Habs D., Parodi K., Thirolfa P.G. // JINST. 2014. V. 9. Art. No. P01008.
  11. Gallego Manzano L., Abaline J.M., Acounis S. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2018. V. 912. P. 329.
  12. Rosar F., Buchholz H.-G., Michels S. et al. // EJNMMI Phys. 2020. V. 7. Art. No. 16.
  13. Rosar F., Bohnenberger H., Moon E.S. et al. // Appl. Radiat. Isot. 2021. V. 170. Art. No. 109599.
  14. Khawar A., Eppard E., Sinnes J.P. et al. // Clin. Nucl. Med. 2018. V. 43. P. 486.
  15. Langbein T., Weber W.A., Eiber M. // J. Nucl. Med. 2019. V. 60. No. 9 (Suppl. 2). P. 13S.
  16. Yordanova A., Eppard E., Kürpig S. et al. // Onco. Targets Ther. 2017. V. 10. P. 4821.
  17. Ferrari C., Niccoli Asabella A., Villano C. et al. // BioMed Res. Int. 2015. V. 2015. Art. No. 129764.
  18. https://www.nndc.bnl.gov/nudat.
  19. https://indico.cern.ch/event/689358/book-of-abstracts.pdf.
  20. Müller C., Zhernosekov K., Köster U. et al. // J. Nucl. Med. 2012. V. 53. No. 12. P. 1951.
  21. Baum R.P., Singh A., Benešová M. et al. // Dalton Trans. 2017. V. 46. P. 14638.
  22. Müller C., Vermeulen C., Köster U. et al. // EJNMMI Radiopharm. Chem. 2016. V. 1. Art. No. 5.
  23. Umbricht C.A., Köster U., Bernhardt P. et al. // Sci. Reports. 2019. V. 9. Art. No. 17800.
  24. Borgna F., Haller S., Rodriguez J.M.M. et al. // Eur. J. Nucl. Med. Mol. Imaging. 2022. V. 49. P. 1113.
  25. Baum R.P., Singh A., Kulkarni H.R. et al. // J. Nucl. Med. 2021. V. 62. No. 10. P. 1391.
  26. Gómez-Tejedor G.G., Fuss M.C. Radiation damage in biomolecular systems. Dordrecht, Heidelberg, London, New York: Springer, 2012. 524 p.
  27. The supply of medical radioisotopes: review of potential molybdenum-99/technetium-99m production technologies. Report OECD Nuclear Energy Agency, 2010.
  28. Martinez Palenzuela Y., Barozier V., Chevallay E. et al. // Front. Med. 2021. V. 8. Art. No. 689281.
  29. https://www.prismap.eu/about/project.
  30. Жеребчевский В.И., Алексеев И.Е., Гриднев К.А. и др. // Изв. РАН. Сер. физ. 2016. Т. 80. № 8. С. 975; Zherebchevsky V.I., Alekseev I.E., Gridnev K.A. et al. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 8. P. 888.
  31. van der Meulen N.P., Hasler R., Talip Z. et al. // Molecules. 2020. V. 25. Art. No. 4706.
  32. Filosofov D.V., Loktionova N.S., Rösch F. // Radiochim. Acta. 2010. V. 98. No. 3. P. 149.
  33. Alliot C., Kerdjoudj R., Michel N. et al. // Nucl. Med. Biol. 2015. V. 42. No. 6. P. 524.
  34. Guertin A., Nigron E., Sitarz M. et al. // Proc. 15th Intern. Conf. NRM. V. 1. (Varenna, 2018). P. 355.
  35. Pupillo G., Mou L., Martini P. et al. // Proc. 15th Intern. Conf. NRM. V. 1. (Varenna, 2018). P. 341.
  36. Fontana A., Calzaferri S., Canton L. et al. // Proc. 15th Intern. Conf. NRM. V. 1. (Varenna, 2018). P. 349.
  37. Koning A.J., Delaroche J.P. // Nucl. Phys. A. 2003. P. 231.
  38. Kalbach C. // J. Physics G. 1999. V. 25. P. 75.
  39. Koning A.J., Hilaire S., Duijvestijn M.C. // Proc. Int. Conf. ND 2007. (Nice, 2007). P. 211.
  40. Otuka N., Dupont E., Semkova V. et al. // Nucl. Data Sheets. 2014. V. 120. P. 272.
  41. De Waal T.J., Peisach M., Pretorius R. // J. Inorg. Nucl. Chem. 1971. V. 33. P. 2783.
  42. Krajewski S., Cydzik I., Abbas K. et al. // Radiochim. Acta. 2013. V. 101. P. 333.
  43. Carzaniga T.S., Auger M., Braccini S. et al. // Appl. Radiat. Isot. 2017. V. 129. P. 96.
  44. Sevior M.E., Mitchell L.W., Anderson M.R. et al. // Aust. J. Phys. 1983. V. 36. P. 463.
  45. Liang H., Han Y., Shen Q. // Nucl. Instrum. Meth. Phys. Res. B. 2011. V. 269. P. 597.
  46. https://www-nds.iaea.org/medical.
  47. Kalbach C. // Phys. Rev. C. 2005. V. 71. Art. No. 034606.
  48. Blann M. // Nucl. Phys. A. 1973. V. 213. P. 570.
  49. Qaim S.M., Sudár S., Scholten B. et al. // Appl. Radiat. Isot. 2014. V. 85. P. 101.
  50. Tárkányi F., Hermanne A., Takács S. et al. // J. Radioanalyt. Nucl. Chem. 2013. V. 298. P. 1385.
  51. Avrigeanu M., Rochman D., Koning A.J. et al. // Eur. Phys. J. A. 2022. V. 58. Art. No. 3.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (623KB)
3.

Download (133KB)
4.

Download (117KB)
5.

Download (190KB)
6.

Download (64KB)
7.

Download (186KB)
8.

Download (185KB)
9.

Download (199KB)
10.

Download (55KB)
11.

Download (87KB)

Copyright (c) 2023 В.И. Жеребчевский, И.Е. Алексеев, Н.А. Мальцев, В.В. Петров, Н.А. Прокофьев, Е.О. Землин, С.Ю. Торилов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies