Efficiency of mechanisms for the formation of sporadic Forbush decreases

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

From the measurements of the neutron monitors world network in the period 1996–2018, 31 strong Forbush decreases (>5%) were identified that satisfy the accepted event selection criterion. The superposed epoch analyses is used to determine the consistent spatial distributions of the solar wind parameters and the decrease in cosmic ray density. It has been established that the contributions of the formation mechanisms of the Forbush decrease differ greatly in two groups of events. The difference may be since the formation of the Forbush depression in one group occurs in the frontal part, and in the other group in the peripheral part of the disturbance.

Авторлар туралы

A. Petukhova

Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy
of Sciences – a separate subdivision of the Federal Research Center “Yakutsk Scientific Center
of the Siberian Branch of the Russian Academy of Sciences”

Email: i_van@ikfia.ysn.ru
Russia, 677027, Yakutsk

I. Petukhov

Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy
of Sciences – a separate subdivision of the Federal Research Center “Yakutsk Scientific Center
of the Siberian Branch of the Russian Academy of Sciences”

Хат алмасуға жауапты Автор.
Email: i_van@ikfia.ysn.ru
Russia, 677027, Yakutsk

S. Petukhov

Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy
of Sciences – a separate subdivision of the Federal Research Center “Yakutsk Scientific Center
of the Siberian Branch of the Russian Academy of Sciences”

Email: i_van@ikfia.ysn.ru
Russia, 677027, Yakutsk

Әдебиет тізімі

  1. Kilpua E., Koskinen H.E.J., Pulkkinen T.I. // Living Rev. Solar Phys. 2017. V. 14. No. 1. P. 5.
  2. Lockwood J.A., Webber W.R., Debrunner H. // J. Geophys. Res. 1991. V. 96. P. 11587.
  3. Krittinatham W., Ruffolo D. // The Astrophys. J. 2009. V. 704. No. 1. P. 831.
  4. Benella S., Laurenza M., Vainio R. et al. // The Astrophys. J. 2020. V. 901. P. 21.
  5. Laitinen T., Dalla S. // 43rd COSPAR Sci. Assembly. (Sydney, 2021). Art. No. 866.
  6. Петухов И.С., Петухов С.И. // Изв. РАН. Сер. физ. 2015. Т. 79. № 5. С. 694; Petukhov I.S., Petukhov S.I. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 5 P. 640.
  7. Petukhova A.S., Petukhov I.S., Petukhov S.I. // The Astrophys. J. 2019. V. 880. P. 17.
  8. Petukhova A., Petukhov I., Petukhov S. // Space Weather. 2020. V. 18. Art. No. e2020SW002616.
  9. Badruddin, Venkatesan D., Zhu B.Y. // Solar Phys. 1991. V. 134. P. 203.
  10. Richardson I.G., Cane H.V. // Solar Phys. 2011. V. 270. No. 2. P. 609.
  11. Белов А.В., Абунин А.А., Абунина М.А. и др. // Изв. РАН. Сер. физ. 2015. Т. 79. № 5. С. 691; Belov A.V., Abunin A.A., Abunina M.A. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 5. P. 637.

© А.С. Петухова, И.С. Петухов, С.И. Петухов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>