Monitoring of heliosphere, magnetosphere and atmosphere via cosmic ray effects in August 2018

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using data of ground-level cosmic ray measurements on the neutron monitor network, along with data of Yakutsk muon telescope complex and muon hodoscope URAGAN (Moscow) uncorrected for temperature, we used modified spectrographic global survey method for an August 2018 event to split cosmic ray variations into components of primary, magnetospheric and atmospheric origin. Time evolutions of isotropic primary flux for different rigidities, pitch-angle anisotropy of cosmic rays, interplanetary magnetic field orientation were obtained, variations in geomagnetic cut-off rigidity in Irkutsk and average-mass temperature over charged components’ measurement sites were also shown.

Sobre autores

I. Kovalev

Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: ivankov@mail.iszf.irk.ru
Russia, 664033, Irkutsk

S. Olemskoy

Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences

Email: ivankov@mail.iszf.irk.ru
Russia, 664033, Irkutsk

V. Sdobnov

Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences

Email: ivankov@mail.iszf.irk.ru
Russia, 664033, Irkutsk

A. Dmitrieva

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: ivankov@mail.iszf.irk.ru
Russia, 115409, Moscow

V. Shutenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: ivankov@mail.iszf.irk.ru
Russia, 115409, Moscow

Bibliografia

  1. https://kauai.ccmc.gsfc.nasa.gov/DONKI.
  2. https://solarmonitor.org.
  3. Abunin A.A., Abunina M.A., Belov A.V., Chertok I.M. // Solar Phys. 2020. V. 295. Art. No. 7.
  4. https://iswa.gsfc.nasa.gov/IswaSystemWebApp.
  5. https://www.ysn.ru/ipm/yktMT00.
  6. Барбашина Н.С., Езубченко А.А., Кокоулин Р.П. и др. // ПТЭ. 2000. № 6. С. 20; Barbashina N.S., Ezubchenko A.A., Kokoulin R.P. et al.// Instrum. Exp. Tech. 2000. No. 6. P. 743.
  7. Шутенко В.В., Астапов И.И., Барбашина Н.С. и др. // Изв. РАН. Сер. физ. 2015. Т. 79. № 5. С. 714; Shutenro V.V., Astapov I.I., Barbashina N.S. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 5. P. 660.
  8. Dvornikov V.M., Sdobnov V.E., Sergeev A.V. // Proc. 18th ICRC. V. 3. (Bangalore, 1983). P. 249.
  9. Dvornikov V.M., Sdobnov V.E. // IJGA. 2002. V. 3. No. 3. P. 217.
  10. Сдобнов В.Е. // Изв. РАН. Сер. физ. 2011. Т. 75. № 6. С. 854; Sdobnov V.E. // Bull. Russ. Acad. Sci. Phys. 2011. V. 75. No. 6. P. 805.
  11. Кравцова М.В., Сдобнов В.Е. // Изв. РАН. Сер. физ. 2013. Т. 77. № 5. С. 602; Kravtsova M.V., Sdobnov V.E. // Bull. Russ. Acad. Sci. Phys. 2013. V. 77. No. 5. P. 538.
  12. Тясто М.И., Данилова O.A., Сдобнов В.E. // Изв. РАН. Сер. физ. 2013. Т. 77. № 5. С. 611; Tyasto M.I., Danilova O.A., Sdobnov V.E. // Bull. Russ. Acad. Sci. Phys. 2013. V. 77. No. 5. P. 547.
  13. Kovalev I.I., Olemskoy S.V., Sdobnov V.E. // J. Atmos. Sol.-Terr. Phys. 2022. V. 235. Art. No. 105887.
  14. Янчуковский В.Л., Сдобнов В.Е. // Изв. РАН. Сер. физ. 2011. Т. 75. № 6. С. 920; Yanchukovsky V.L., Sdobnov V.E. // Bull. Russ. Acad. Sci. Phys. 2011. V. 75. No. 6. P. 869.
  15. https://omniweb.gsfc.nasa.gov/ow.html.
  16. http://wdc.kugi.kyoto-u.ac.jp/dst_final/index.html.
  17. http://ready.arl.noaa.gov/gdas1.php.
  18. Richardson I.G., Dvornikov V.M., Sdobnov V.E., Cane H.V. // J. Geophys. Res. 2000. V. 105A. Art. No. 12579.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (990KB)
3.

Baixar (264KB)

Declaração de direitos autorais © И.И. Ковалев, С.В. Олемской, В.Е. Сдобнов, А.Н. Дмитриева, В.В. Шутенко, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies