Patterns of effect of spark plasma sintering temperature on microstructure of thermoelectric composites based on Bi2Te2.1Se0.9Bi2 matrix with cobalt inclusions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Effect of spark plasma sintering temperature on the formation of Co filler particles in the Bi2Te2.1Se0.9 matrix has been examined. Owing to high-temperature diffusion redistribution of atoms in the matrix and filler materials and chemical interaction between these materials, in the Bi2Te2.1Se0.9 + 0.33 wt % Co, core–shell filler particles (Co@CoTe2) are formed. With increasing the sintering temperature, fraction of the “CoTe2 shell” in the particles increases, while fraction of the “Co core” decreases. This behavior is due to an increasing in the diffusion coefficient of Co in the Bi2Te2.1Se0.9 matrix with increasing in the sintering temperature. The concentration profiles of the Co distribution of in the Bi2Te2.1Se0.9 matrix, governed by diffusion, are well described using Fick’s second law for diffusion from a limited source of a diffusing substance. The diffusion coefficient of Co increases with increasing un the sintering temperature in accordance with the Arrhenius law and with an activation energy of ~0.61 eV.

Sobre autores

M. Zhezhu

Федеральное государственное бюджетное образовательное учреждение высшего образования
“Белгородский государственный технологический университет имени В.Г. Шухова”

Autor responsável pela correspondência
Email: marina_jeju@mail.ru
Россия, Белгород

A. Vasil’ev

Belgorod State University

Email: marina_jeju@mail.ru
Russia, 308015, Belgorod

O. Ivanov

Belgorod State Technological University; Belgorod State University

Email: marina_jeju@mail.ru
Russia, 308012, Belgorod; Russia, 308015, Belgorod

Bibliografia

  1. Fortulan R., Yamini S.A. // Materials. 2021. V. 14. No. 20. Art. No. 6059.
  2. Zhao W. Liu Z., Wei P. et al. // Nature Nanotechnol. 2017. V. 12. No. 1. P. 55.
  3. Xing L., Cui W., Sang X. et al. // J. Materiomics. 2021. V. 7. No. 5. P. 998.
  4. Ma S., Li C., Wei P. et al. // J. Mater. Chem. A. 2020. V. 8. No. 9. P. 4816.
  5. Li D., Zhang J., Song C.J. et al. // RSC Advances. 2015. V. 5. No. 54. Art. No. 43717.
  6. Ivanov O., Yaprintsev M., Vasil’ev A. et al. // Chin. J. Phys. 2022. V. 77. P. 24.
  7. Иванов О.Н., Япрынцев М.Н., Васильев А.Е. и др. // Стекло и керамика. 2021. № 11. С. 23; Ivanov O., Yaprintsev M., Vasil’ev A. et al. // Glass Ceram+. 2022. V. 78. No. 11. P. 442.
  8. Mehrer H. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Springer Science & Business Media, 2007. P. 295.
  9. Павлов П.В., Хохлов А.Ф. Физика твердого тела. М.: ЛЕНАНД, 2015. С. 496.
  10. Lan Y.C., Wang D.Z., Chen G. et al. // Appl. Phys. Lett. 2008. V. 92. Art No. 101910.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (149KB)
4.

Baixar (301KB)

Declaração de direitos autorais © М. Жежу, А.Е. Васильев, О.Н. Иванов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies