The electron beam of the linear induction accelerator with kiloampere current as a driver for the submillimeter free electron laser

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The project of a submillimeter free electron laser (FEL) based on a relativistic electron beam (REB) generated in a linear induction accelerator (LIA) was proposed at the BINP SB RAS together with the IAP RAS. According to our theoretical analysis, the electron beam generated in the LIA (energy \({{E}_{e}} = 5{\text{--}}10\) MeV, current \({{I}_{b}} = 1{\text{--}}2\) kA, normalized emittance \({{\varepsilon }_{n}}\) ~ 1100 π · mm · mrad) is a suitable driver for generating sub-GW pulses of coherent EM radiation in submm range (0.3–1 THz). The main proposals for the creation of the FEL based on the electron beam generated in the LIA are presented, the main project tasks are outlined, and the proposed methods for their solution are described. The results of electron-optical experiments on the formation of an electron beam intended for FEL applications are presented.

About the authors

E. S. Sandalov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: E.S.Sandalov@inp.nsk.su
Russia, 630090, Novosibirsk

S. L. Sinitsky

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: E.S.Sandalov@inp.nsk.su
Russia, 630090, Novosibirsk

A. V. Arzhannikov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: E.S.Sandalov@inp.nsk.su
Russia, 630090, Novosibirsk

D. A. Nikiforov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: E.S.Sandalov@inp.nsk.su
Russia, 630090, Novosibirsk

D. I. Skovorodin

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: E.S.Sandalov@inp.nsk.su
Russia, 630090, Novosibirsk

V. A. Pavlyuchenko

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: E.S.Sandalov@inp.nsk.su
Russia, 630090, Novosibirsk

N. S. Ginzburg

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences; Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: E.S.Sandalov@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 603950, Nizhny Novgorod

N. Yu. Peskov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences; Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: E.S.Sandalov@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 603950, Nizhny Novgorod

R. V. Protas

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics

Email: E.S.Sandalov@inp.nsk.su
Russia, 456770, Snezhinsk

D. Yu. Karasev

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics

Email: E.S.Sandalov@inp.nsk.su
Russia, 456770, Snezhinsk

References

  1. Arzhannikov A.V., Ginzburg N.S., Malkin A.M. et al. // Proc. 44th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (Paris, 2019). Art. No. 5864231.
  2. Peskov N.Yu., Arzhannikov A.V., Ginzburg N.S. et al. // Proc. SPIE. 2020. V. 11582. Art. No. 1158207.
  3. Логачев П.В., Кузнецов Г.И., Корепанов А.А. и др. // ПТЭ. 2013. № 6. С. 42.
  4. Nikiforov D.A., Blinov M.F., Fedorov V.V. et al. // Phys. Part. Nucl. Lett. 2020. V. 17. P. 197.
  5. Sandalov E.S., Sinitsky S.L., Skovorodin D.I. et al. // 2021 IEEE International Conf. on Plasma Science (Lake Tahoe, 2021). Art. No. 21360392
  6. Ekdahl C. // IEEE Trans. Plasma Sci. 2022. V. 30. No. 1. P. 254.
  7. Ekdahl C., Sinitsky S.L., Skovorodin D.I. et al. // IEEE Trans. Plasma Sci. 2006. V. 34. P. 460.
  8. Merle E., Anthouard Ph., Bardy J. et al. // Proc. 5th European Conference EPAC 96 (Sitges, 1996). Report EPAC-1996-THP014G.
  9. Ekdahl C. // Beam dynamics for ARIA. Tech. Rep. LA-UR-14-274454. Los Alamos: Los Alamos Nat. Lab., 2014.
  10. Ekdahl C. // IEEE Trans. Plasma Sci. 2015. V. 43. No. 12. P. 4123.
  11. Ekdahl C. // IEEE Trans. Plasma Sci. 2021. V. 49. No. 10. P. 3092.
  12. Crawford M., Barraza J. // Proc. 2017 IEEE 21st Int. Conf. Pulsed Power (Brighton, 2017). P. 1.
  13. Ekdahl C. Beam dynamics for the Scorpius conceptual design report. Tech. Rep. LA-UR-17-29176. Santa Fe: Los Alamos Nat. Lab., 2017.
  14. Ekdahl C. // IEEE Tran. Plasma Sci. 2021. V. 49. No. 11. P. 3548.
  15. Panofsky W.K.H., Bander M. // Rev. Sci. Instrum. 1968. V. 39. P. 206.
  16. Neil V.K., Hall L.S., Cooper R.K. // Particle Accel. 1979. V. 9. No. 4. P. 213.
  17. Ekdahl C., Coleman J.E., McCuistian B.T. // IEEE Trans. Plasma Sci. 2016. V. 44. No. 7. P. 1094.
  18. Faries W., Gehring K.A., Richards P.L. et al. // Phys. Rev. 1969. V. 180. No. 2. P. 363.
  19. Morris J.R., Shen Y.R. // Opt. Commun. 1971. V. 3. No. 2. P. 81.
  20. Gallerano G.P., Doria A., Giovenale E. // Terahertz Sci. Technol. 2014. V. 7. No. 4. P. 160.
  21. Jeong Y.U., Lee B.C., Kim S.K. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2001. V. 475. P. 47.
  22. Byrd J.M., Leemans W. P., Loftsdottir A. et al. // Phys. Rev. Lett. 2002. V. 89. Art. No. 224801.
  23. Carr G.L., Martin M.C., McKinney W.R. et al. // Nature. 2002. V. 420. P. 153.
  24. Gover A., Faingersha A., Eliran A. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2004. V. 528. P. 23.
  25. Van Der Meer A.F.G. // Nucl. Instrum. Meth. Phys. Res. A. 2004. V. 528. P. 8.
  26. Prazeres R., Glotin F., Ortega J.M. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2004. V. 528. P. 83.
  27. Shevchenko O.A., Arbuzov V.S., Vinokurov N.A. et al. // Phys. Procedia. 2016. V. 84. P. 13.
  28. Kulipanov G.N., Bagryanskaya E.G., Chesnokov E.N. IEEE Trans. THz Sci. Technol. 2015. V. 5. No. 5. P. 798.
  29. Sandalov E.S., Sinitsky S.L., Nikiforov D.A. et al. // 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz, 2021). P. 1.
  30. Sandalov E.S., Sinitsky S.L., Skovorodin D.I. et al. // IEEE Trans. Plasma Sci. 2021. V. 49. No. 2. P. 718.
  31. Nikiforov D.A., Petrenko A.V., Sinitsky S.L. et al. // J. Instrum. 2021. V. 16. Art. No. 11024.
  32. Ekdahl C. // IEEE Trans. Plasma Sci. 2019. V. 47. No. 1. P. 300.
  33. Godfrey B.B., Hughes T.P. // 1989 IEEE Particle Accelerator Conference “Accelerator Science and Technology”. V. 2. P. 1023.
  34. Сандалов Е.С., Синицкий С.Л., Сковородин Д.И. и др. // Сибир. физ. журн. 2022. Т. 17. № 1. С. 5.
  35. Ginzburg N.S., Zaslavskii V.Y., Zotova I.V. et al. // JETP Lett. 2010. V. 91. P. 266.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (158KB)
3.

Download (116KB)
4.

Download (1MB)
5.

Download (451KB)

Copyright (c) 2023 Е.С. Сандалов, С.Л. Синицкий, А.В. Аржанников, Д.А. Никифоров, Д.И. Сковородин, В.А. Павлюченко, Н.С. Гинзбург, Н.Ю. Песков, Р.В. Протас, Д.Ю. Карасев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies