Charge carrier transport and polarization in M/PZT/M structures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A model of non-stationary charge carrier transport in M/PZT/M ferroelectric structures has been developed. It is assumed that, at room temperature, electrons generated by oxygen vacancies are captured by Ti+3 levels and move between them under the action of electric fields caused by the external bias and polarization. The polarization distribution in a PZT film is described with varying degrees of complexity, from a constant value outside the defect layers to one determined by the equation following from the Landau–Ginzburg theory. The numerical simulation performed made it possible to explain the reasons and conditions for the appearance of current–voltage characteristics with unusual current peaks, to show the existence of several solutions in the Landau–Ginzburg model for a film with Schottky barriers, and to reveal the response of charged domain walls to an applied voltage.

作者简介

L. Delimova

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ladel@mail.ioffe.ru
Russia, 194021, Saint-Petersburg

V. Yuferev

Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: ladel@mail.ioffe.ru
Russia, 194021, Saint-Petersburg

参考

  1. Liu T., Wallace M., Trolier-mcKinstry S., Jackson T.N. // J. Appl. Phys. 2017. V. 122. No. 16. Art. No. 164103.
  2. Cornelius T.W., Mocuta C., Escoubas S. et al. // J. Appl. Phys. 2017. V. 122. No. 16. Art. No. 164104.
  3. Scott J.F., Melnik B.M., Cuchiaro J.D. et al. // Int. Ferroelectr. 1994. V. 4. No. 1. P. 85.
  4. Dawber M., Scott J.F. // J. Phys. Cond. Matter. 2004. V. 16. No. 49. Art. No. L515.
  5. Pintilie L., Alexe M. // J. Appl. Phys. 2005. V. 98. No. 12. Art. No. 124103.
  6. Alkoy E.M., Shiosaki T. // Thin Solid Films. 2007. V. 516. No. 12. P. 516.
  7. Zhu W., Ren W., Xin H. et al. // J. Adv. Dielectr. 2013. V. 3. No. 2. Art. No. 1350011.
  8. Podgorny Y., Vorotilov K., Sigov A. // Appl. Phys. Lett. 2014. V. 105. No. 18. Art. No. 182904.
  9. Barala S.S., Roul B., Banerjee N. et al. // J. Appl. Phys. 2016. V. 120. No. 11. Art. No. 115305.
  10. Podgorny Y., Vorotilov K., Sigov A. // AIP Advances. 2016. V. 6. No. 9. Art. No. 095025.
  11. Simmons J.G. // Phys. Rev. Lett. 1965. V. 15. No. 25. P. 967.
  12. Filip L.D., Pintilie L. // Eur. Phys. J. B. 2016. V. 89. No. 2. P. 44.
  13. Делимова Л.А., Гущина Е.В., Юферев В.С. и др. // ФТТ. 2014. Т. 56. № 12. С. 2366; Delimova L.A., Gushchina E.V., Yuferev V.S. et al. // Phys. Solid State. 2014. V. 56. No. 12. P. 2451.
  14. Delimova L.A., Gushchina E.V., Seregin D.S. et al. // J. Appl. Phys. 2017. V. 121. No. 22. Art. No. 224104.
  15. Robertson J., Warren W.L., Tuttle A. et al. // Appl. Phys. Lett. 1993. V. 63. No. 11. P. 1519.
  16. Warren W.L., Robertson J., Dimos D.D. et al. // Ferroelectrics. 1994. V. 153. No. 1. P. 303.
  17. Delimova L.A., Yuferev V.S. // J. Appl. Phys. 2018. V. 124. No. 18. Art. No. 184102.
  18. Delimova L.A., Yuferev V.S. // J. Phys. Conf. Ser. 2019. V. 1400. No. 5. Art. No. 055003.
  19. Haun M.J., Zhuang Z.Q., Furman E. et al. // Ferroelectrics. 1989. V. 99. No. 1. P. 45.
  20. Yudin S.P., Panchenko T.V., Kudzin A.Yu. // Ferrolecrtics. 1978. V. 18. No. 1. P. 45.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (463KB)
3.

下载 (502KB)
4.

下载 (697KB)

版权所有 © Л.А. Делимова, В.С. Юферев, 2023

##common.cookie##