Magnetic and dielectric properties double perovskite Sr2MnTiO5.87

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Magnetic and dielectric properties of Sr2MnTiO5.87 double perovskite have been studied. Magnetic phase transitions were observed at 12 and 43 K in the FC and ZFC curves of magnetization and magnetic heat capacity, the nature of which is being discussed. From the analysis of the lattice contribution to the specific heat, the Debye and Einstein temperatures were determined, which were θD = 217 К, θЕ1 = 275 К, θЕ2 = 615 К, θЕ3 = 2000 К.

Sobre autores

R. Eremina

Zavoisky Physical-Technical Institute, Federal Research Center
“Kazan Scientific Center of the Russian Academy of Sciences”

Autor responsável pela correspondência
Email: REremina@yandex.ru
Russia, 420029, Kazan

T. Chupakhina

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: REremina@yandex.ru
Russia, 620990, Ekaterinburg

R. Batulin

Kazan (Volga Region) Federal University

Email: REremina@yandex.ru
Russia, 420008, Kazan

D. Popov

Zavoisky Physical-Technical Institute, Federal Research Center
“Kazan Scientific Center of the Russian Academy of Sciences”

Email: REremina@yandex.ru
Russia, 420029, Kazan

Yu. Deeva

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: REremina@yandex.ru
Russia, 620990, Ekaterinburg

A. Mirzorakhimov

Ural Federal University

Email: REremina@yandex.ru
Russia, 620002, Ekaterinburg

Bibliografia

  1. Sarma D., Sampathkumaran E., Ray S. et al. // Solid State Commun. 2000. V. 114. P. 465.
  2. Kumar S., Giovannetti G., van den Brink J., Picozzi S. // Phys. Rev. B. 2010. V. 82. Art. No. 134429.
  3. Vasala S., Karppinen M. // Progr. Solid State Chem. 2015. V. 43. No. 1–2. P. 1.
  4. Demazeau G., Siberchicot B., Matar S. et al. // J. Appl. Phys. 1994. V. 75. P. 4617.
  5. Meetei O.N., Erten O., Mukherjee A. et al. // Phys. Rev. B. 2013. V. 87. Art. No. 165104.
  6. Alvarez–Serrano I., Angeles Arillo M., Garcıa-Hernandez M. et al. // J. Amer. Ceram. Soc. 2010. V. 93. P. 2311.
  7. Popov D.V., Gavrilova T.P., Gilmutdinov I.F. et al. // J. Phys. Chem. Solids. 2021. V. 148. Art. No. 109695.
  8. Valant M., Kolodiazhnyi T., Arcon I. et al. // Adv. Funct. Mater. 2012. V. 22. No. 10. P. 2114.
  9. Tackett R., Lawes G., Melot B.C. et al. // Phys. Rev. B. 2007. V. 76. Art. No. 024409.
  10. Mustonen O., Vasala S., Sadrollahi E. et al. // Nature Commun. 2018. V. 9. Art. No. 1085.
  11. Clark L., Orain J.C., Bert F. et al. // Phys. Rev. Lett. 2013. V. 110. Art. No. 207208.
  12. Mydosh J.A. // Rep. Progr. Phys. 2015. V. 78. Art. No. 052501.
  13. Murugesan G., Nithya R., Kalainathan S. // J. Cryst. Growth. 2020. V. 530. Art. No. 125179.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (72KB)
3.

Baixar (421KB)
4.

Baixar (109KB)
5.

Baixar (137KB)

Declaração de direitos autorais © Р.М. Еремина, Т.И. Чупахина, Р.Г. Батулин, Д.В. Попов, Ю.А. Деева, А.А. Мирзорахимов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies