Spectra of the effects of magnetic birefringence and dichroism in magnetic colloids with different particle sizes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Experimental studies of the spectral dependences of the effects of birefringence and dichroism in magnetic colloids with magnetite nanoparticles with an average size of 5.5 and 8 nm have been carried out. It is shown that the magnitude of the effects in a sample with larger particles is approximately two times greater at the same volume concentration. Possible reasons for this difference are analyzed, considering the polydispersity of the samples, as well as the possibility of the presence of magnetically hard and superparamagnetic particles in them. The calculations of the spectra of the effects of birefringence and dichroism showed good agreement with the experimental data.

Sobre autores

C. Yerin

North Caucasus Federal University

Autor responsável pela correspondência
Email: exiton@inbox.ru
Russia, 355017, Stavropol

V. Vivchar

North Caucasus Federal University

Email: exiton@inbox.ru
Russia, 355017, Stavropol

E. Shevchenko

North Caucasus Federal University

Email: exiton@inbox.ru
Russia, 355017, Stavropol

Bibliografia

  1. Zahn M. // J. Nanopart. Res. 2001. V. 3. P. 73.
  2. Davies H.W., Llewellyn J.P. // J. Phys. D. 1980. V. 13. P. 2327.
  3. Скибин Ю.Н., Чеканов В.В., Райхер Ю.Л. // ЖЭТФ. 1977. Т. 72. № 3. С. 949; Skibin Yu.N., Chekanov V.V., Raiker Yu.L. // JETP. 1977. V. 45. No. 3. P. 496.
  4. Llewellyn J.P. // J. Phys. D. 1983. V. 16. P. 95.
  5. Jennings B.R., Xu M., Ridler P.J. // Proc. Royal Soc. A. 2000. V. 456. P. 891.
  6. Donatini F., Neveu S., Monin J. // J. Magn. Magn. Mater. 1996. V. 162. P. 69.
  7. Mehta R.V., Patel Rajesh, Upadhyay R.V. // Phys. Rev. B. 2006. V. 74. No. 19. Art. No. 195127.
  8. Radha S., Mohan S., Pai C. // Physica B. 2014. V. 448. P. 341.
  9. Philip J., Laskar J.M. // J. Nanofluids. 2012. V. 1. P. 3.
  10. Horng H.E., Chen C.S., Fang K.L. et al. // Appl. Phys. Lett. 2004. V. 85. P. 5592.
  11. Philip J., Mahendran V., Felicia L.J. // J. Nanofluids. 2013. V. 2. P. 112.
  12. Mahendran V., Philip J. // Sens. Actuators. 2013. V. B 185. P. 488.
  13. Du T, Yuan S, Luo W. // Appl. Phys. Lett. 1994. V. 65. P. 1844.
  14. Horng H.E., Hong C.Y., Lee S.L. et al. // J. Appl. Phys. 2003. V. 88. P. 5904.
  15. Pu S., Chen X., Chen L. et al. // Appl. Phys. Lett. 2005. V. 87. Art. No. 021901.
  16. Das P., Colombo M., Prosperi D. // Colloids Surf. B. 2019. V. 174. P. 42.
  17. Scholten P.C. // IEEE Trans. Magn. 1980. V. MAG-16. No. 2. P. 221.
  18. Reed W., Fendler J.H. // J. Appl. Phys. 1986. V. 59. No. 8. P. 2914.
  19. Такетоми С., Тикадзуми С. Магнитная жидкость. М.: Мир, 1993. 272 с.
  20. Ерин К.В.// Опт. и спектроск. 2016. Т. 120. № 2. С. 333; Erin K.V. // Opt. Spectrosс. 2016. V. 120. No. 2. P. 320.
  21. Socoliuc V., Popescu L.B. // J. Magn. Magn. Mater. 2012. V. 324. P. 113.
  22. Yerin C.V., Lykhmanova V.I., Yerina M.V. // MHD. 2018. V. 54. No. 1–2. P. 155.
  23. Yerin C., Lykhmanova V., Erina M. // EPJ Web Conf. 2018. V. 185. Art. No. 09007.
  24. Ерин К.В. // Неорг. матер. 2022. Т. 58. № 4. С. 421; Yerin K.V. // Inorg. Mater. 2022. V. 58. No. 4. P. 403.
  25. Spartakov A.A., Trusov A.A., Vojtylov V.V., Rudakova E.V. // Colloids Surf. A. 1999. V. 148. P. 9.
  26. Hasmonay E., Dubois E., Bacri J.-C. et al. // Eur. Phys. J. B. 1998. V. 5. P. 859.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (75KB)
3.

Baixar (213KB)
4.

Baixar (233KB)
5.

Baixar (234KB)

Declaração de direitos autorais © К.В. Ерин, В.И. Вивчарь, Е.И. Шевченко, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies