Frequency multiplication in a high-current relativistic gyrotron for obtaining high-power THz-band radiation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using averaged equations and 3D particle-in-cell simulations, we investigate the frequency multiplication regime in a high-current relativistic gyrotron operating in 0.1 THz frequency band. We demonstrate that the ratio of the 3rd harmonic power and the fundamental cyclotron resonance power can reach 0.4–0.8%, which aloows for obtaining the 0.3 THz radiation with sub-MW output power level.

Sobre autores

A. Leontiev

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod

R. Rozental

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky State University of Nizhny Novgorod

Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod; Russia, 603950, Nizhny Novgorod

N. Ginzburg

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod

I. Zotova

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod

A. Malkin

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky State University of Nizhny Novgorod

Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod; Russia, 603950, Nizhny Novgorod

A. Sergeev

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod

Bibliografia

  1. Sabchevski S., Glyavin M., Mitsudo S. et al. // J. Infrared Millim. THz Waves. 2021. V. 42. No. 7. P. 715.
  2. Thumm M. // J. Infrared Millim. THz Waves. 2020. V. 41. No. 1. P. 1.
  3. Rozental R.M., Danilov Yu.Yu., Leontyev A.N. et al. // IEEE Trans. Electron Dev. 2022. V. 69. No. 3. P. 1451.
  4. Завольский Н.А., Нусинович Г.С., Павельев А.Б. // Изв. вузов. Радиофиз. 1988. Т. 31. № 3. С. 361.
  5. Idehara T., Ogawa I., Shimizu Y., Tatsukawa T. // J. Infrared Millim. THz Waves. 1998. V. 19. P. 803.
  6. Golubiatnikov G.Yu., Koshelev M.A., Tsvetkov A.I. et al. // IEEE Trans. Terahertz Sci. Tech. 2020. V. 10. No. 5. P. 502.
  7. Glyavin M., Zotova I., Rozental R. et al // J. Infrared Millim. THz Waves. 2020. V. 41. P. 1245.
  8. Братман В.Л., Гинзбург Н.С., Нусинович Г.С. и др. // В кн.: Релятивистская высокочастотная электроника. Горький: ИПФАН СССР, 1979. С. 157.
  9. Dumbrajs O., Saito T., Tatematsu Y., Yamaguchi Y. // Phys. Plasmas. 2016. V. 23. Art. No. 093109.
  10. Ginzburg N.S., Nusinovich G.S., Zavolsky N.A. // Int. J. Electron. 1986. V. 61. No. 6. P. 881.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (60KB)
3.

Baixar (2MB)
4.

Baixar (80KB)

Declaração de direitos autorais © А.Н. Леонтьев, Р.М. Розенталь, Н.С. Гинзбург, И.В. Зотова, А.М. Малкин, А.С. Сергеев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies