Performance indicators of the medicines used in squamous cell lung cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. Squamous cell lung cancer is a type of non-small cell lung cancer and is specific in its clinical and pathological characteristics, the treatment process is somewhat difficult due to such reasons as old age, the presence of concomitant diseases, the location of the main tumor focuses in the center of the lung.

Objective: Determination of the effectiveness of medicines used in the treatment of lung cancer, by intellectual analysis methods.

Material and methods. The study used artificial intelligence analysis methods to process statistical data on drug consumption.

Results. According to the results of the evaluation of the effectiveness of medicines used in squamous cell lung cancer, it was revealed that such medicines as: Cisplatin ebeve® (50 mg/100 ml), Carboplatin-ebeve® (150 mg/15 ml), Carboplatin-ebeve® (450 mg/45 ml), are highly effective; Gemcitabine Ebeve® (200 mg/5 ml), Gemcitabine Ebeve® (1000 mg/25 ml), Etoposide ebeve® (100 mg/5 ml), Paclitaxel ebeve® (30 mg/5 ml), Paclitaxel ebeve® (100 mg/16,7 ml), Paclitaxel ebeve® (300 mg/50 ml), Docetaxel Ebeve ® (10 mg/ml), Docetaxel Ebeve® (20 mg/2 ml), Docetaxel Ebeve® (80 mg/8 ml), Avastin® (100 mg/4 ml), Avastin® (400 mg/16 ml), Erlonib (25 mg, No. 30), Erlonib (100 mg, No. 30), Erlonib (150 mg, No. 30), Erlonix (100 mg, No.30), Erlonix (150 mg, No. 30), Ertinob (100 mg, No. 30) Ertinob (150 mg, No. 30).

Conclusion. Based on the performance indicators of medicines used in squamous cell lung cancer, priority groups of them have been identified for admission.

About the authors

Nizom Davurovich Suyunov

Tashkent Pharmaceutical Institute

Email: suyunovn.d.5555@gmail.com
ORCID iD: 0000-0002-2712-958X

Doctor of Pharmaceutical Sciences, professor, Head of Department of pharmaceutical organization

Uzbekistan, 45, Aybek Street, Tashkent, 100015

Nargiza Xalimovna Rajabova

Tashkent Pharmaceutical Institute

Author for correspondence.
Email: nargiza-rh@mail.ru
ORCID iD: 0000-0003-2237-150X

basic doctoral student of the Department of pharmaceutical organization

Uzbekistan, 45, Aybek Street, Tashkent, 100015

References

  1. Zaitsev A.M., Kobyletskaya T.M., Kisariev S.A., Mikhailov N.I., Datsenko P.V., Kirsanova O.N. Long-term follow-up of a patient with squamous cell lung cancer with synchronous metastatic lesion of the brain (Clinical observation and literature review). Oncology. Journal named after P.A. Herzen. P.A. Herzen. 2022; 11 (4): 51–7 (in Russian).
  2. Suyunov N.D. Pharmacoeconomic studies of drug provision for chronic obstructive pulmonary disease in Uzbekistan. Pulmonology. Moscow, 2011; 3: 64–9. doi: 10.18093/0869-0189-2011-0-3-64-69 (in Russian).
  3. Ignatiev N.A. Generalized estimates and local metrics of objects in intelligent data analysis. Monograph. Tashkent: “University”, 2014; 72 (in Russian).
  4. Madrakhimov Sh.F., Suyunov N.D., Khurramov A.Kh., Ikromova G.M. Calculating the generalized assessment of medicines belonging to the VEN group by means of intellectual analysis // News of UzMU, scientific journal of the National University of Uzbekistan named after M.Ulugbek. Tashkent, “University”, 2013; 2: 95–8.
  5. Rocha A.,S. Goldenstein. Multiclass from Binary: Expanding One-Versus-All, One-Versus-One and ECOC-Based Approaches. IEEE transactions on neural networks and learning systems. 2014; 25: 289–302. doi: 10.1109/TNNLS.2013.2274735
  6. Ignatyev N.A., Rakhimova M.A. Formation and analysis of sets of informative features of objects by pairs of classes. Artificial intelligence and decision making. 2021; 4: 18–26. doi: 10.14357/20718594210402
  7. Madrakhimov Sh. F., Rozikhodjaeva G. A. and Makharov K. T. Construction of fuzzy inference rules for medicines diagnostics problems. J. of Physics: Conf. Ser. 2032 012032, 2021; doi: 10.1088/1742-6596/2032/1/012032
  8. Krivenko M.P. Learning classification of incomplete clinical data. Informatics and its applications. 2017; 11 (3): 27–33. DOI: 10.14357/ 1 9922264 170303 (in Russian).
  9. Madrahimov Sh.F., Makharov K.T., Khurramov A.H. Selection of informative features with the account of data gaps. Problems of Computational and Applied Mathematics. 2022; 4 (42): 147–57 (in Russian).
  10. Rajabova N.X., Suyunov N.D. Questionnaire for specialist doctors on pharmacoeconomic evaluation of medicines used in the treatment of lung cancer. Printed in the printing house “Innovative Development Publishing House”. Tashkent, 2021; 18 (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».