First Experiments on Reduction the Heat Load on the Divertor Plates of the Globus-M2 Tokamak Using Nitrogen Seeding and Their Comparison with Simulation Results

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

At the compact spherical Globus-M2 tokamak, a series of experiments was conducted to study the
effect of the injection of nitrogen on the discharge parameters. The experiments were carried out in discharges
in deuterium in the divertor configuration, and the auxiliary heating was performed by deuterium
neutral beam injection. During the nitrogen seeding, a substantial decrease in electron temperature near the
divertor was recorded as well as a sharp decrease of the heat flux onto the divertor plate, while the density and
temperature of the main plasma changed insignificantly. Simulations by the SOLPS-ITER showed a satisfactory
agreement with the experiment.

作者简介

N. Zhiltsov

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

E. Kiselev

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

G. Kurskiev

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

V. Minaev

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

I. Miroshnikov

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

P. Molchanov

Peter the Great Saint Petersburg Polytechnic University

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 195251 Russia

A. Novokhatsky

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

Yu. Petrov

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

V. Rozhansky

Peter the Great St. Petersburg Polytechnic University

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 195251 Russia

N. Sakharov

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

A. Telnova

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

V. Timokhin

Peter the Great St. Petersburg Polytechnic University

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 195251 Russia

E. Tkachenko

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

V. Tokarev

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

E. Tukhmeneva

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

P. Shchegolev

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

N. Khromov

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

N. Bakharev

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

E. Vekshina

Peter the Great St. Petersburg Polytechnic University

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 195251 Russia

V. Gusev

Ioffe Institute, Russian Academy of Sciences

Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 194021 Russia

K. Dolgova

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: Nikolay.Khromov@mail.ioffe.ru
St. Petersburg, 195251 Russia

参考

  1. Kukushkin A.S., Pacher H.D., Loarte A., Komarov V., Kotov V., Merola M., Pacher G.W. and Reiter D. // Nucl. Fusion. 2009. V. 49. № 7. P. 075008. https://doi.org/10.1088/0029-5515/49/7/075008
  2. Leonard A.W. // Plasma Phys. Control. Fusion. 2018. V. 60. № 4. 044001 https://doi.org/10.1088/1361-6587/aaa7a9
  3. Reimold F., Wischmeier M., Bernert M., Potzel S., Kallenbach A., Müller H.W., Sieglin B., Stroth U. and the ASDEX Upgrade Team // Nucl. Fusion. 2015. V. 55. № 3. P. 033004. https://doi.org/10.1088/0029-5515/55/3/033004
  4. Komm M., Khodunov I., Cavalier J., Vondracek P., Henderson S., Seidl J., Horacek J., Naydenkova D., Ada-mek J., Bilkova P., Bohm P., Devitre A., Dimitrova M., Elmore S., Faitsch M., Hacek P., Havlicek J., Havra-nek A., Imrisek M., Krbec J., Peterka M., Panek R., Samoylov O., Sos M., Tomes M., Tomova K., Weinzettl V. and The EUROfusion MST1 Team // Nucl. Fusion. 2019. V. 59. № 10. P. 106035. https://doi.org/10.1088/1741-4326/ab34d2
  5. Kallenbach A., Bernert M., Dux R., Casali L., Eich T., Giannone L., Herrmann A., McDermott R., Mlynek A., Müller H.W., Reimold F., Schweinzer J., Sertoli M., Tardini G., Treutterer W., Viezzer E., Wenninger R., Wischmeier M. and the ASDEX Upgrade Team. // Plasma Phys. Control. Fusion. 2013. V. 55. № 12. P. 124041. https://doi.org/10.1088/0741-3335/55/12/124041
  6. Курскиев Г.С., Жильцов Н.С., Коваль А.Н., Кор-нев А.Ф., Макаров А.М., Мухин Е.Е., Петров Ю.В., Сахаров Н.В., Соловей В.А., Ткаченко Е.Е., Толстяков С.Ю., Чернаков П.В. // Письма в ЖТФ. 2021. Т. 47. Вып. 24. С. 41. https://doi.org/10.21883/PJTF.2021.24.51799.19019
  7. Counsell G.F., Ahn J.-W., Akers R., Arends E., Fiel-ding S.J., Helander P., Kirk A., Meyer H., Tabasso A., Wilson H., Yang. Y. // J. Nucl. Mater. 2003. V. 313–316. № 3. P. 804. https://doi.org/10.1016/S0022-3115(02)01439-3
  8. Хромов Н.А., Векшина Е.О., Гусев В.К., Литунов-ский Н.В., Патров М.И., Петров Ю.В., Саха-ров Н.В. // ЖТФ. 2021. Т. 91. Вып. 3. С. 421. https://doi.org/10.21883/JTF.2021.03.50518.227-20
  9. Février O., Theiler C., De Oliveira H., Labit B., Fedorczak N., Baillod A. // Review of Scientific Instruments. 2018. V. 89. № 5. P. 053502. https://doi.org/10.1063/1.5022459
  10. Kuang A.Q., Brunner D., LaBombard B., Leccacorvi R., Vieira R.// Review of Scientific Instruments. 2018. V. 89. № 4. P. 043512. https://doi.org/10.1063/1.5023905
  11. Loarte A., Monk R.D., Martin-Solis J.R., Campbell D.J., Chankin A.V., Clement S., Davies S.J., Ehrenberg J., Erents S.K., Guo H.Y., Harbour P.J., Horton L.D., Inges-son L.C., J¨ackel H., Lingertat J., Lowry C.G., Mag-gi C.F., Matthews G.F., McCormick K., O’Brien D.P., Reichle R., Saibene G., Smith R.J., Stamp M.F., Stork D., Vlases G.C. // Nucl. Fusion. 1998. V. 38. № 3. P. 331. https://doi.org/10.1088/0029-5515/38/3/303
  12. Stangeby P.C. The Plasma Boundary of Magnetic FusionDevices (IoP Publishing, Bristol), 2000.
  13. Antar G.Y., Counsell G., Ahn J.-W., Yang Y., Price M., Tabasso A., Kirk A. // Phys. Plasmas. 2005. V. 12. № 3. 032506. https://doi.org/10.1063/1.1861894
  14. Stangeby P.C., McCracken G.M. // Nucl. Fusion. 1990. V. 30. № 7. 1225. https://doi.org/10.1088/0029-5515/30/7/005
  15. Eich T., Leonard A.W., Pitts R.A., Fundamenski W., Goldston R.J., Gray T.K., Herrmann A., Kirk A., Kallenbach A., Kardaun O., Kukushkin A.S., LaBombard B., Maingi R., Makowski M.A., Scarabosio A., Sieglin B., Terry J., Thornton A. // Nucl. Fusion. 2013. V. 53. № 9. P. 093031. https://doi.org/10.1088/0029-5515/53/9/093031
  16. Loarte A., Hughes J.W., Reinke M.L., Terry J.L., LaBom-bard B., Brunner D., Greenwald M., Lipschultz B., Ma Y., Wukitch S., Wolfe S. // Phys. Plasmas. 2011. V. 18. № 5. P. 056105. https://doi.org/10.1063/1.3567547
  17. Kallenbach A., Dux R., Fuchs J.C., Fischer R., Geiger B., Giannone L., Herrmann A., Lunt T., Mertens V., McDermott R., Neu R., Pütterich T., Rathgeber S., Rohde V., Schmid K., Schweinzer J., Treutterer W. and ASDEX Upgrade Team // Plasma Phys. Control. Fusion. 2010. V. 52. № 5. P. 055002. https://doi.org/10.1088/0741-3335/52/5/055002
  18. Rozhansky V., Kaveeva E., Senichenkov I., Sytova E., Veselova I., Voskoboynikov S., Coster D. // Contrib. Plasma Phys. 2018. V. 58. № 6–8. P. 540. https://doi.org/10.1002/ctpp.201700119
  19. Vekshina E., Dolgova K., Rozhansky V., Kaveeva E., Se-nichenkov I ., Molchanov P., Timokhin V., Khromov N., Zhiltsov N., Bakharev N., Kiselev E., Tuhmeneva E. // Phys. Plasmas. 2023. V. 30. № 042504. https://doi.org/10.1063/5.0134542
  20. Khodunov I., Komm M., Havranek A., Adamek J., Bohm P., Cavalier J., Seidl J., Devitre A., Dimitrova M., Elmore S., Faitsch M., Hacek P., Havlicek J., Hron M., Imrisek M., Krbec J., Peterka M., Panek R., Samoy-lov O., Tomes M., Tomova K., Vondracek P., Weinzettl V. and the EUROfusion MST1 Team // Plasma Phys. Control. Fusion. 2021. V. 63. № 6. P. 065012. https://doi.org/10.1088/1361-6587/abf03e

补充文件

附件文件
动作
1. JATS XML
2.

下载 (135KB)
3.

下载 (189KB)
4.

下载 (418KB)
5.

下载 (392KB)
6.

下载 (338KB)
7.

下载 (294KB)
8.

下载 (83KB)
9.

下载 (95KB)

版权所有 © Н.А. Хромов, Н.Н. Бахарев, Е.О. Векшина, В.К. Гусев, К.В. Долгова, Н.С. Жильцов, Е.О. Киселев, Г.С. Курскиев, В.Б. Минаев, И.В. Мирошников, П.А. Молчанов, А.Н. Новохацкий, Ю.В. Петров, В.А. Рожанский, Н.В. Сахаров, А.Ю. Тельнова, В.М. Тимохин, Е.Е. Ткаченко, В.А. Токарев, Е.А. Тюхменева, П.Б. Щеголев, 2023

##common.cookie##