Modification and Mass Loss of Melamine Formaldehyde Particles in Dusty Plasma Formed in Heavy Noble Gas

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results are presented from experiments on determining the size of melamine formaldehyde dust particles during their long-term stay in the dust-plasma trap formed in the glow discharge in argon. It is shown that in 30 min, the diameter of particles decreases from 7.3 (initial diameter) to 3.5 μm; accordingly, the particles lose almost 90% of their mass. Three stages were distinguished of particle degradation in time. In the stage of maximum rate of particle size decrease, particles lose 20 pg/min. The data obtained are compared with the available measurement results for discharges in neon. It was ascertained that the rate of particle size decrease depends on the mass of plasma-forming gas. In argon and krypton, at the identical discharge parameters, the degradation of particles of the same initial size occurs faster than in neon. However, the starting time of intense mass loss more strongly depends on the particle size than on the type of gas. The data are compared with the existing physical model of particle degradation, and recommendations are proposed for performing long-term experiments with melamine formaldehyde particles.

作者简介

E. Dzlieva

St. Petersburg State University

Email: plasmadust@yandex.ru
199034, St. Petersburg, Russia

A. Gorbenko

Saint Petersburg State University

Email: plasmadust@yandex.ru
Russia, 199034, Saint Petersburg

M. Golubev

St. Petersburg State University

Email: v.karasev@spbu.ru
199034, St. Petersburg, Russia

M. Ermolenko

Saint Petersburg State University

Email: plasmadust@yandex.ru
Russia, 199034, Saint Petersburg

L. Novikov

St. Petersburg State University

Email: plasmadust@yandex.ru
199034, St. Petersburg, Russia

S. Pavlov

St. Petersburg State University

Email: s.i.pavlov@spbu.ru
199034, St. Petersburg, Russia

V. Polischuk

Admiral Makarov State University of Maritime and Inland Shipping

Email: vpvova@rambler.ru
Russia, 198035, Saint-Petersburg

V. Karasev

St. Petersburg State University

编辑信件的主要联系方式.
Email: plasmadust@yandex.ru
199034, St. Petersburg, Russia

参考

  1. Bouchoule A. Dusty Plasmas: Physics, Chemistry, and Technological Impact in Plasma Processing. Orlean: Wiley, 1999.
  2. Vladimirov S.V., Ostrikov K., Samarian A.A. // Physics and Applications of Complex Plasmas. London: Imperial College Press, 2005. 439 p.
  3. Fortov V.E., Mofill G.E. Complex and dusty plasmas: from laboratory to space. N.Y.: Taylor & Francis Group, 2010. 418 p.
  4. Bonitz M., Horing N., Ludwig P. Introduction to Complex Plasma. Berlin–Heidelberg: Springer-Verlag, 2010. 443 p.
  5. Hayashii Y., Tachibana K. // Japan J. Appl. Phys. 1994. V. 33. P. L804.
  6. Stoffels W.W., Stoffels E., Swinkels G.H.P.M., Boufni-chel M., Kroesen G.M.W. // Phys. Rev. E. 1999. V. 59. P. 2302.
  7. Yasuda H. // Plasma Polimerization. Florida: Orladdo, 1985.
  8. Abourayana H.M., Dowling D.P. Plasma Processing for Tailoring the Surface Properties of Polymers. I-NTECH, 2015. P. 123.
  9. Цытович В.Н., Морфилл Г.Е., Томас Х. // Физика Плазмы. 2004. Т. 30. С. 877.
  10. Karasev V.Yu., Dzlieva E.S., Eikhval’d A.I., Ermolen-ko M.A, Golubev M.S., Ivanov A.Yu. // Phys. Rev. E. 2009. V. 79. P. 026406.
  11. Дзлиева Е.С., Ермоленко М.А., Карасев В.Ю. // Физика плазмы. 2012. Т. 38. С. 591.
  12. Дзлиева Е.С., Ермоленко М.А., Карасев В.Ю. // ЖТФ. 2012. Т. 82. С. 51.
  13. Ермоленко М.А., Дзлиева Е.С., Карасев В.Ю., Пав-лов С.И., Полищук В.А., Горбенко А.П. // Письма в ЖТФ. 2015. Т. 41. С. 77.
  14. Карасев В.Ю., Дзлиева E.C., Горбенко А.П., Ма-шек И.Ч., Полищук В.А., Миронова И.И. // ЖТФ. 2017. Т. 87. С. 473.
  15. Карасев В.Ю., Полищук В.А., Горбенко А.П., Дзли-ева E.C., Ермоленко М.А., Макар М.М. // ФТТ. 2016. Т. 58. С. 1007.
  16. Karasev V., Dzlieva E., Pavlov S., Matvievskaya O., Polischuk V., Ermolenko M., Eichvald A., Gorbenko A. // Contrib. Plasma Phys. 2019. V. 59. P. e.201800145.
  17. Karasev V., Polischuk V., Dzlieva E., Pavlov S., Mirono-va I., Gorbenko A. // J. Phys.: Conf. Ser. 2018. V. 946. P. 012156.
  18. Karasev V., Polischuk V., Dzlieva E., Pavlov S., Gorben-ko A. // J. Phys.: Conf. Ser. 2020. V. 1556. P. 012080.
  19. Райзер Ю.П. Физика газового разряда. М.: Наука, 1992. 536 с.
  20. Рабинович В.А., Хавин З.Я. // Краткий химический справочник. М.: Химия, 1977.
  21. Anderson I.H., Cawley M., Steedman W. // British Polym. J. 1969. V. 1. P. 24.
  22. Anderson I.H., Cawley M., and Steedman W. // British Polym. J. 1970. V. 3. P. 86.
  23. Zobnin A.V., Usachov A.D., Fortov V.E. // AIP Conf. Proc. 2002. V. 649. P. 293.
  24. Kononov E.A., Vasiliev M.M., Vasilieva E.V., Petrov O.F. // Nanomaterials. 2021. V. 11. P. 2931.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (18KB)
4.

下载 (27KB)
5.

下载 (18KB)
6.

下载 (20KB)

版权所有 © Е.С. Дзлиева, А.П. Горбенко, М.С. Голубев, М.А. Ермоленко, Л.А. Новиков, С.И. Павлов, В.А. Полищук, В.Ю. Карасев, 2023

##common.cookie##