Modification and Mass Loss of Melamine Formaldehyde Particles in Dusty Plasma Formed in Heavy Noble Gas

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results are presented from experiments on determining the size of melamine formaldehyde dust particles during their long-term stay in the dust-plasma trap formed in the glow discharge in argon. It is shown that in 30 min, the diameter of particles decreases from 7.3 (initial diameter) to 3.5 μm; accordingly, the particles lose almost 90% of their mass. Three stages were distinguished of particle degradation in time. In the stage of maximum rate of particle size decrease, particles lose 20 pg/min. The data obtained are compared with the available measurement results for discharges in neon. It was ascertained that the rate of particle size decrease depends on the mass of plasma-forming gas. In argon and krypton, at the identical discharge parameters, the degradation of particles of the same initial size occurs faster than in neon. However, the starting time of intense mass loss more strongly depends on the particle size than on the type of gas. The data are compared with the existing physical model of particle degradation, and recommendations are proposed for performing long-term experiments with melamine formaldehyde particles.

Sobre autores

E. Dzlieva

St. Petersburg State University

Email: plasmadust@yandex.ru
199034, St. Petersburg, Russia

A. Gorbenko

Saint Petersburg State University

Email: plasmadust@yandex.ru
Russia, 199034, Saint Petersburg

M. Golubev

St. Petersburg State University

Email: v.karasev@spbu.ru
199034, St. Petersburg, Russia

M. Ermolenko

Saint Petersburg State University

Email: plasmadust@yandex.ru
Russia, 199034, Saint Petersburg

L. Novikov

St. Petersburg State University

Email: plasmadust@yandex.ru
199034, St. Petersburg, Russia

S. Pavlov

St. Petersburg State University

Email: s.i.pavlov@spbu.ru
199034, St. Petersburg, Russia

V. Polischuk

Admiral Makarov State University of Maritime and Inland Shipping

Email: vpvova@rambler.ru
Russia, 198035, Saint-Petersburg

V. Karasev

St. Petersburg State University

Autor responsável pela correspondência
Email: plasmadust@yandex.ru
199034, St. Petersburg, Russia

Bibliografia

  1. Bouchoule A. Dusty Plasmas: Physics, Chemistry, and Technological Impact in Plasma Processing. Orlean: Wiley, 1999.
  2. Vladimirov S.V., Ostrikov K., Samarian A.A. // Physics and Applications of Complex Plasmas. London: Imperial College Press, 2005. 439 p.
  3. Fortov V.E., Mofill G.E. Complex and dusty plasmas: from laboratory to space. N.Y.: Taylor & Francis Group, 2010. 418 p.
  4. Bonitz M., Horing N., Ludwig P. Introduction to Complex Plasma. Berlin–Heidelberg: Springer-Verlag, 2010. 443 p.
  5. Hayashii Y., Tachibana K. // Japan J. Appl. Phys. 1994. V. 33. P. L804.
  6. Stoffels W.W., Stoffels E., Swinkels G.H.P.M., Boufni-chel M., Kroesen G.M.W. // Phys. Rev. E. 1999. V. 59. P. 2302.
  7. Yasuda H. // Plasma Polimerization. Florida: Orladdo, 1985.
  8. Abourayana H.M., Dowling D.P. Plasma Processing for Tailoring the Surface Properties of Polymers. I-NTECH, 2015. P. 123.
  9. Цытович В.Н., Морфилл Г.Е., Томас Х. // Физика Плазмы. 2004. Т. 30. С. 877.
  10. Karasev V.Yu., Dzlieva E.S., Eikhval’d A.I., Ermolen-ko M.A, Golubev M.S., Ivanov A.Yu. // Phys. Rev. E. 2009. V. 79. P. 026406.
  11. Дзлиева Е.С., Ермоленко М.А., Карасев В.Ю. // Физика плазмы. 2012. Т. 38. С. 591.
  12. Дзлиева Е.С., Ермоленко М.А., Карасев В.Ю. // ЖТФ. 2012. Т. 82. С. 51.
  13. Ермоленко М.А., Дзлиева Е.С., Карасев В.Ю., Пав-лов С.И., Полищук В.А., Горбенко А.П. // Письма в ЖТФ. 2015. Т. 41. С. 77.
  14. Карасев В.Ю., Дзлиева E.C., Горбенко А.П., Ма-шек И.Ч., Полищук В.А., Миронова И.И. // ЖТФ. 2017. Т. 87. С. 473.
  15. Карасев В.Ю., Полищук В.А., Горбенко А.П., Дзли-ева E.C., Ермоленко М.А., Макар М.М. // ФТТ. 2016. Т. 58. С. 1007.
  16. Karasev V., Dzlieva E., Pavlov S., Matvievskaya O., Polischuk V., Ermolenko M., Eichvald A., Gorbenko A. // Contrib. Plasma Phys. 2019. V. 59. P. e.201800145.
  17. Karasev V., Polischuk V., Dzlieva E., Pavlov S., Mirono-va I., Gorbenko A. // J. Phys.: Conf. Ser. 2018. V. 946. P. 012156.
  18. Karasev V., Polischuk V., Dzlieva E., Pavlov S., Gorben-ko A. // J. Phys.: Conf. Ser. 2020. V. 1556. P. 012080.
  19. Райзер Ю.П. Физика газового разряда. М.: Наука, 1992. 536 с.
  20. Рабинович В.А., Хавин З.Я. // Краткий химический справочник. М.: Химия, 1977.
  21. Anderson I.H., Cawley M., Steedman W. // British Polym. J. 1969. V. 1. P. 24.
  22. Anderson I.H., Cawley M., and Steedman W. // British Polym. J. 1970. V. 3. P. 86.
  23. Zobnin A.V., Usachov A.D., Fortov V.E. // AIP Conf. Proc. 2002. V. 649. P. 293.
  24. Kononov E.A., Vasiliev M.M., Vasilieva E.V., Petrov O.F. // Nanomaterials. 2021. V. 11. P. 2931.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (18KB)
4.

Baixar (27KB)
5.

Baixar (18KB)
6.

Baixar (20KB)

Declaração de direitos autorais © Е.С. Дзлиева, А.П. Горбенко, М.С. Голубев, М.А. Ермоленко, Л.А. Новиков, С.И. Павлов, В.А. Полищук, В.Ю. Карасев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies