Atomic Oxygen Generation by Longitudinal–Transverse Discharge

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Results of numerical simulation using Plasmaero CFD code are presented for direct current (DC) discharge in a high-speed airflow. Modelling of plasma was performed using single-fluid MHD approach and detailed plasma-chemistry. As a result of simulation, the dynamics of DC discharge was obtained which corresponds to dynamics of this object registered during previous experimental study including such effect as the discharge re-breakdown. Concentration of atomic oxygen in different parts of discharge and near them was obtained and analysed. The influence estimation of obtained atomic oxygen concentration on the fuel mixture induction time was performed using zero-dimensional calculation. It was shown that atomic oxygen generation by DC discharge dramatically reduce the ignition delay that could be important for combustion stimulation in a high-speed flow.

Sobre autores

V. Bityurin

Joint Institute for High Temperatures, Russian Academy of Sciences; National Research University “Moscow Power Engineering Institute”

Email: valentin.bityurin@gmail.com
125412, Moscow, Russia; 111250, Moscow, Russia

A. Dobrovolskaya

Joint Institute for High Temperatures of Russian Academy of Sciences

Email: helfil@mail.ru
Moscow, Russia

A. Bocharov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: valentin.bityurin@gmail.com
125412, Moscow, Russia

A. Firsov

Joint Institute for High Temperatures, Russian Academy of Sciences

Autor responsável pela correspondência
Email: valentin.bityurin@gmail.com
125412, Moscow, Russia

Bibliografia

  1. Poggie J., McLaughlin T., Leonov S. // Aerospace-Lab Journal. 2015. № 10. P. AL10-01. https://doi.org/10.12762/2015.AL10-01
  2. Alferov V.I., Bushmin A.S. // Sov. Phys. JETP. 1963. V. 17. № 6. P. 1190.
  3. Alferov V.I., Bushmin A.S., Kalachev B.V. // Sov. Phys. JETP. 1967. V. 24. № 5. P. 859.
  4. Ershov A.P., Surkont O.S., Timofeev I.B., Shibkov V.M., Chernikov V.A. // High Temperature. 2004. V. 42. № 5. P. 667. https://doi.org/10.1023/B:HITE.0000046519.53287.47
  5. Ershov A.P., Kalinin A.V., Surkont O.S., Timofeev I.B., Shibkov V.M., Chernikov V.A. // High Temperature. 2004. V. 42. № 6. P. 865. https://doi.org/10.1007/S10740-005-0029-0
  6. Bychkov V.L., Grachev L.P., Esakov I.I., Ravaev A.A., Khodataev K.V. // Technical Physics 2004 49:7. 2004. V. 49. № 7. P. 833. https://doi.org/10.1134/1.1778855
  7. Leonov S.B., Yarantsev D.A. // Fluid Dynamics. 2008. V. 43. № 6. P. 945. https://doi.org/10.1134/S001546280806015X
  8. Шибков В.М., Шибкова Л. В., Логунов А.А. // Физика плазмы. 2017. Т. 43. № 3. С. 314. Shibkov V.M., Shibkova L.V., Logunov A.A. // Plasma Physics Reports. 2017. V. 43. № 3. P. 373. https://doi.org/10.1134/S1063780X17030114
  9. Шибков В.М., Шибкова Л.В., Логунов А.А. // Физика плазмы. 2018. Т. 44. № 8. С. 661. = Shibkov V.M., Shibkova L.V., Logunov A.A. // Plasma Physics Reports. 2018. V. 44. № 8. P. 754. https://doi.org/10.1134/S1063780X18080056
  10. Leonov S.B., Savelkin K.V., Firsov A.A., Yarantsev D.A. // High Temperature. 2010. V. 48. № 6. P. 896–902. https://doi.org/10.1134/S0018151X10060179
  11. Firsov A., Savelkin K.V., Yarantsev D.A., Leonov S.B. // Philos. Trans. R. Soc. A. 2015. V. 373. № 2048. https://doi.org/10.1098/rsta.2014.0337
  12. Firsov A.A., Kolosov N.S. // J Phys Conf Ser. 2021. V. 2100. № 1. https://doi.org/10.1088/1742-6596/2100/1/012017
  13. Leonov S.B., Elliott S., Carter C., Houpt A., Lax P., Ombrello T. // Exp Therm Fluid Sci. 2021. V. 124. P. 110355. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2021.110355
  14. Efimov A.V., Firsov A.A., Kolosov N.S., Leonov S.B. // Plasma Sources Sci Technol. 2020. V. 29. № 7. https://doi.org/10.1088/1361-6595/AB9C94
  15. Firsov A.A., Efimov A.V., Kolosov N.S., Moralev I.A., Leonov S.B. // J Phys Conf Ser. 2021. V. 2100. № 1. P. 012007. https://doi.org/10.1088/1742-6596/2100/1/012007
  16. Watanabe Y., Elliott S., Firsov A., Houpt A., Leonov S. // J. Phys. D Appl. Phys. 2019. V. 52. № 44. P. 444003. https://doi.org/10.1088/1361-6463/AB352F
  17. Andrews P., Lax P., Leonov S. // Energies (Basel). 2022. V. 15. № 19. P. 7104. https://doi.org/10.3390/EN15197104
  18. Ershov A.P., Kamenshchikov S.A., Kolesnikov E.B., Logunov A.A., Firsov A.A., Chernikov V.A. // Fluid Dynamics. 2008. V. 43. № 4. P. 605. https://doi.org/10.1134/S0015462808040133
  19. Dvinin S.A., Ershov A.P., Timofeev I.B., Chernikov V.A., Shibkov V.M. // High Temperature. 2004. V. 42. № 2. P. 171. https://doi.org/10.1023/B:HITE.0000026147.82949.36
  20. Moralev I., Kazanskii P., Bityurin V., Bocharov A., Fir-sov A., Dolgov E., Leonov S. // J. Phys. D: Appl. Phys. 2020. V. 53. № 42. P. 425203. https://doi.org/10.1088/1361-6463/AB9D5A
  21. Rakhimov R.G., Moralev I.A., Firsov A.A., Bityurin V.A., Bocharov A.N. // J. Phys.: Conf. Ser. 2019. V. 1147. № 1. P. 012128. https://doi.org/10.1088/1742-6596/1147/1/012128
  22. Bityurin V.A., Bocharov A.N., Dobrovolskaya A.S., Kuz-netsova T.N., Popov N.A., Filimonova E.A. // J. Phys.: Conf. Ser. 2021. V. 2100. P. 012032. https://doi.org/10.1088/1742-6596/2100/1/012032
  23. Tarasov D.A., Firsov A.A. // J. Phys.: Conf. Ser. 2021. V. 2100. № 1. P. 012015. https://doi.org/10.1088/1742-6596/2100/1/012015
  24. Gray M.D., Sirohi J., Raja L.L. // AIAA Aerospace Sciences Meeting. 2018. P. 2018-0935. https://doi.org/10.2514/6.2018-0935
  25. Bourlet A., Labaune J., Tholin F., Pechereau F., Vincent-Randonnier A., Laux C.O. // AIAA Science and T-echnology Forum and Exposition, AIAA SciTech Forum 2022. 2022. P. 2022-0831. https://doi.org/10.2514/6.2022-0831
  26. Kosarev I.N., Aleksandrov N.L., Kindysheva S.V., Starikovskaia S.M., Starikovskii A.Y. // J. Phys. D: A-ppl. Phys. 2008. V. 41. № 3. https://doi.org/10.1088/0022-3727/41/3/032002
  27. Kosarev I.N., Aleksandrov N.L., Kindysheva S.V., Starikovskaia S.M., Starikovskii A.Y. // Combust Flame. 2009. V. 156. № 1. https://doi.org/10.1016/j.combustflame.2008.07.013
  28. Filimonova E.A., Bityurin V.A. // XXXI ICPIG. 2013.
  29. Kosarev I.N., Kindysheva S.V., Momot R.M., Plasti-nin E.A., Aleksandrov N.L., Starikovskiy A.Y. // Combust Flame. 2016. V. 165. https://doi.org/10.1016/j.combustflame.2015.12.011
  30. Bocharov A.N., Bityurin V.A. LAP Lambert Academic Publishing, 2017. 228 p.
  31. Bityurin V.A., Bocharov A.N., Popov N.A. // Fluid Dynamics 2008 43:4. 2008. V. 43. № 4. P. 642. https://doi.org/10.1134/S0015462808040170
  32. Bityurin V.A., Bocharov A.N. // Fluid Dynamics 2006 41:5. 2006. V. 41. № 5. P. 843. https://doi.org/10.1007/S10697-006-0100-5
  33. Firsov A., Bityurin V., Tarasov D., Dobrovolskaya A., Troshkin R., Bocharov A. // Energies (Basel). 2022. V. 15. № 19. P. 7015. https://doi.org/10.3390/en15197015
  34. Bityurin V.A., Bocharov A.N. // J. Phys. D: Appl. Phys. 2018. V. 51. № 26. P. 264001. https://doi.org/10.1088/1361-6463/AAC566
  35. Park C. // J Thermophys Heat Trans. 1993. V. 7. № 3. https://doi.org/10.2514/3.431
  36. Bityurin V.A., Bocharov A.N., Popov N.A. // 46th AIAA Aerospace Sciences Meeting and Exhibit. 2008. https://doi.org/10.2514/6.2008-1385.
  37. Benilov M.S., Naidis G.V. // J Phys D Appl Phys. 2003. V. 36. № 15. P. 1834. https://doi.org/10.1088/0022-3727/36/15/314
  38. Leonov S.B., Yarantsev D.A., Napartovich A.P., Kochetov I.V. // IEEE Transactions on Plasma Science. 2006. V. 34. № 6. P. 2514–2525. https://doi.org/10.1109/TPS.2006.886089
  39. Ju Y., Sun W. // Prog Energy Combust Sci. 2015. V. 48. P. 21–83. https://doi.org/10.1016/j.pecs.2014.12.002
  40. Filimonova E.A., Dobrovolskaya A.S. // Russ. J. Phys. Chem. B. 2023. V. 12 (in press).
  41. Filimonova E.A. // J. Phys. D Appl. Phys. 2015. V. 48. № 1. https://doi.org/10.1088/0022-3727/48/1/015201

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (134KB)
3.

Baixar (58KB)
4.

Baixar (199KB)
5.

Baixar (360KB)
6.

Baixar (347KB)
7.

Baixar (297KB)
8.

Baixar (366KB)
9.

Baixar (200KB)
10.

Baixar (219KB)
11.

Baixar (105KB)

Declaração de direitos autorais © В.А. Битюрин, А.С. Добровольская, А.Н. Бочаров, А.А. Фирсов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies