Generation of synchrotron radiation during interaction of a multiterawatt laser pulse with transparent plasma

Cover Page

Cite item

Full Text

Abstract

Relativistic self-trapping of a relativistic-intensity laser pulse during its propagation in a transparent high-density plasma is accompanied by the generation of ultra-bright synchrotron (betatron) radiation of the super-hard X-ray range. The paper studies the effect of the duration of a laser pulse of a given energy on the characteristics of such radiation. It is shown that the already available compression of powerful laser pulses significantly increases the efficiency of conversion into synchrotron radiation, and also increases the brightness of the X-ray source by an order of magnitude.

About the authors

O. E Vais

Lebedev Physical Institute, Russian Academy of Sciences; Dukhov All-Russia Research Institute of Automatics

Email: ovais@lebedev.ru
Moscow, Russia

M. G Lobok

Lebedev Physical Institute, Russian Academy of Sciences; Dukhov All-Russia Research Institute of Automatics

Moscow, Russia

V. Yu Bychenkov

Lebedev Physical Institute, Russian Academy of Sciences; Dukhov All-Russia Research Institute of Automatics

Moscow, Russia

References

  1. Corde S., Ta Phuoc K., Lambert G., Fitour R., Malka V., Rousse A., Beck A., Lefebvre E. // Rev. Mod. Physics. 2013. V. 85. P. 1. https://doi.org/10.1103/RevModPhys.85.1
  2. Curcio A., Cianchi A., Costa G., Del Dotto A., Demurtas F., Ferrario M., Rodriguez Fras M.D., Galletti M., Perez-Hernandez J.A., Gatti G. // Sci. Rep. 2024. V. 14. P. 1719. https://doi.org/10.1038/s41598-024-52231-z
  3. Ma Y., Cardarelli J.A., Campbell P.T., Fourmaux S., Fitzgarrald R., Balcazar M.D., Antoine A.F., Beier N.F., Qian Q., Hussein A.E., Kettle B., Klein S.R., Krushelnick K., Li Y.F., Mangles S.P.D., Sarri G., Seipt D., Senthilkumaran V., Streeter M.J.V., Willingale L., Thomas A.G.R. // Phys. Rev. Lett. 2024. V. 132. P. 225001. https://doi.org/10.1103/PhysRevLett.132.225001
  4. Kneip S., McGuffey C., Chvykov V., Dollar F., Kalintchenko G., Maksimchuk T., Mangles S.P.D., Matsuoka T., Nagel S.R., Palmer C.A.J., Schreiber J., Ta Phuoc K., Thomas A.G.R., Krushelnick K., Najmudin Z. // AIP Conf. Proc. 2010. V. 1299. P. 185. https://doi.org/10.1063/1.3520311
  5. Finlay O.J., Gruse J.-N., Thornton C., Allott R., Armstrong C.D., Baird C.D., Bourgeois N., Brenner C., Cipiccia S., Cole J.M., Gregory C., Jamison S., Katzir Y., Lopes N.C., Mangles S.P.D., Murphy C.D., Najmudin Z., Neely D., Pickard L.R., Potter K.D., Rajeev P.P., Rusby D., Selwood M.P., Symes D.R., Underwood C.I.D., Wood J.C., Thomas A.G.R., Streeter M.J.V. // Plasma Phys. Control. Fusion. 2021. V. 63. P. 084010. https://doi.org/10.1088/1361-6587/ac0fcf
  6. Pagano I.M., Lemos N., King P.M., Rusby D., Sinclair M., Aghedo A., Khan S., Downer M.C., Joshi C., Albert F. // Phys. Plasmas. 2024. V. 31. P. 073110. https://doi.org/10.1063/5.0191435
  7. Rosmej O.N., Shen X.F., Pukhov A., Antonelli L., Barbato F., Zahter S., Popov V.S., Borisenko N.G., Andreev N.E. // Matter Radiat. Extremes. 2021. V. 6. P. 048401. https://doi.org/10.1063/5.0042315
  8. Pukhov A., Meyer-ter-Vehn J. // Appl. Phys. B. 2002. V. 74. P. 355. https://doi.org/10.1007/s003400200795
  9. Pukhov A., Gordienko S., Kiselev S., Kostyukov I. // Plasma Phys. Control. Fusion. 2004. V. 46. P. B179. https://doi.org/10.1088/0741-3335/46/12B/016
  10. Faure J., Glinec Y., Pukhov A., Kiselev S., Gordienko S., Lefebvre E., Rousseau J.-P., Burgy F., Malka V. // Nature. 2004. V. 431. P. 541. https://doi.org/10.1038/nature02963
  11. Wang X., Zgadzaj R., Fazel N., Li Z., Yi S.A., Zhang X., Henderson W., Chang Y.-Y., Korzekwa R., Tsai H.-E., Pai C.-H., Quevedo H., Dyer G., Gaul E., Martinez M., Bernstein A.C., Borger T., Spinks M., Donovan M., Khudik V., Shvets G., Ditmire T., Downer M.C. // Nat. Commun. 2013. V. 4. P. 1988. https://doi.org/10.1038/ncomms2988
  12. Rosmej O.N., Andreev N.E., Zaehter S., Zahn N., Christ P., Borm B., Radon T., Sokolov A., Pugachev L.P., Khaghani D., Horst F., Borisenko N.G., Sklizkov G., Pimenov V.G. // New J. Phys. 2019. V. 21. P. 043044. https://doi.org/10.1088/1367-2630/ab1047
  13. Pukhov A., Sheng Z.-M., Meyer-ter-Vehn J. // Phys. Plasmas. 1999. V. 6. P. 2847. https://doi.org/10.1063/1.873242
  14. Vais O.E., Lobok M.G., Bychenkov V.Y. // Phys. Rev. E. 2024. V. 110. P. 065202. https://doi.org/10.1103/PhysRevE.110.065202
  15. Francescone D., Carillo M., Chiadroni E., Curcio A., Cianchi A., Ferrario M., Gatti G., Galletti M., Giuliano L., Migliorati M., Mostacci A., Palumbo L., Rossi A.R., Stocchi F., Silvi G.J. // Proc. IPAC’24, Geneva, 2024. P. 573. https://doi.org/10.18429/JACoW-IPAC2024-MOPR58
  16. Albert F., Thomas A.G.R. // Plasma Phys. Control. Fusion. 2016. V. 58. P. 103001. https://doi.org/10.1088/0741-3335/58/10/103001
  17. Cikhardt J., Gyrdymov M., Zahter S., Tavana P., Gunther M.M., Bukharskii N., Borisenko N., Jacoby J., Shen X.F., Pukhov A., Andreev N.E., Rosmej O.N. // Matter Radiat. Extremes. 2024. V. 9. P. 027201. https://doi.org/10.1063/5.0181119
  18. Vais O.E., Lobok M.G., Bychenkov V.Y. // Bull. Lebedev Phys. Inst. 2023. V. 50. Suppl 7. P. S806. https://doi.org/10.3103/S1068335623190168
  19. Lobok M.G., Andriyash I.A., Vais O.E., Malka V., Bychenkov V.Yu. // Phys. Rev. E. 2021. V. 104. P. L053201. https://doi.org/10.1103/PhysRevE.104.L053201
  20. Bychenkov V.Y., Kovalev V.F. // JETP Lett. 2024. V. 120. P. 334. https://doi.org/10.1134/S0021364024602719
  21. Bychenkov V.Yu., Lobok M.G., Kovalev V.F., Brantov A.V. // Plasma Phys. Control. Fusion. 2019. V. 61. P. 124004. https://doi.org/10.1088/1361-6587/ab5142
  22. Mangles S.P.D., Genoud G., Bloom M.S., Burza M., Najmudin Z., Persson A., Svensson K., Thomas A.G.R., Wahlstrom C.-G. // Phys. Rev. ST Accel. Beams. 2012. V. 15. P. 011302. https://doi.org/10.1103/PhysRevSTAB.15.011302
  23. Andreev N.E., Kirsanov V.I., Gorbunov L.M. // Phys. Plasmas. 1995. V. 2. P. 2573. https://doi.org/10.1063/1.871219
  24. Andreev N.E., Kirsanov V.I., Gorbunov L.M., Sakharov A.S. // IEEE Trans. Plasma Sci. 1996. V. 24. P. 363. https://doi.org/10.1109/27.510000
  25. Vais O.E., Lobok M.G., Soloviev A.A., Mironov S.Yu., Khazanov E.A., Bychenkov V.Yu. // JETP Lett. 2023. V. 118. P. 875. https://doi.org/10.1134/S0021364023603548
  26. Khazanov E.A., Mironov S.Y., Mourou G. // Phys.-Usp. 2019. V. 62. P. 1096. https://doi.org/10.3367/UFNe.2019.05.038564
  27. Lu W., Tzoufras M., Joshi C., Tsung F.S., Mori W.B., Vieira J., Fonseca R.A., Silva L.O. // Phys. Rev. ST Accel. Beams. 2007. V. 10. P. 061301. https://doi.org/10.1103/PhysRevSTAB.10.061301
  28. Jackson J.D. Classical electrodynamics. Moscow: Mir, 1965.
  29. Landau L.D., Lifshitz E.M. Theory of field. Edition 7th. Moscow: Nauka, 1988.
  30. Vais O.E., Bychenkov V.Y. // Quantum Electron. 2020. V. 50. P. 922. https://doi.org/10.1070/QEL17344
  31. Fourmaux S., Lassonde P., Mironov S.Yu., Hallin E., Legare F., Maclean S., Khazanov E.A., Mourou G., Kieffer J.C. // Opt. Lett. 2022. V. 47. P. 3163. https://doi.org/10.1364/OL.459199
  32. Nieter C., Cary J.R. // J. Comput. Phys. 2004. V. 196. P. 448. https://doi.org/10.1016/j.jcp.2003.11.004
  33. Nerush E.N., Kostyukov I.Y. // Phys. Rev. Lett. 2009. V. 103. P. 035001. https://doi.org/10.1103/PhysRevLett.103.035001
  34. Németh K., Shen B., Li Yu., Shang H., Crowell R., Harkay K.C., Cary J.R. // Phys. Rev. Lett. 2008. V. 100. P. 095002. https://doi.org/10.1103/PhysRevLett.100.095002

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).