INCREASING THE EFFICIENCY OF LASER ACCELERATION OF PROTONS USING ULTRA-THIN TARGETS

封面

如何引用文章

全文:

详细

The results of laser acceleration of protons from aluminum targets 6 μm thick and ultra-thin diamond-like carbon films 100 nm thick when they are irradiated with femtosecond laser pulses with a peak intensity of up to 5 × 1020 W/cm2 are presented. It is shown that decreasing the target thickness from 6 μm to 100 nm does not lead to a significant change in the maximum proton energies, but contributes to an increase in the angular yield and the laser energy conversion coefficient. This effect is due to an increase in the number of protons in the low-energy part of the spectra, which is reflected in a twofold increase in the conversion coefficient.

作者简介

A. Bushukhin

Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics

Email: dep5@vniitf.ru
Snezhinsk, Russia

K. Safronov

Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics

Snezhinsk, Russia

S. Gorokhov

Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics

Snezhinsk, Russia

V. Flegentov

Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics

Snezhinsk, Russia

D. Zamuraev

Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics

Snezhinsk, Russia

A. Shamraev

Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics

Snezhinsk, Russia

S. Kovaleva

Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics

Snezhinsk, Russia

N. Fedorov

Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics

Snezhinsk, Russia

A. Potapov

Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics

Snezhinsk, Russia

参考

  1. Badziak J. // J. Phys.: Confer. Ser. 2017. V. 959. P. 012001. https://doi.org/10.1088/1742-6596/959/1/012001
  2. Feldman S., Dyer G., Kuk D., Ditmire T. // Phys. Rev. E. 2017. V. 95. P. 031201. https://doi.org/10.1103/PhysRevE.95.031201
  3. Dyer G.M., Bernstein A.C., Cho B.I., Osterholz J., Grigsby W., Dalton A., Shepherd R., Ping Y., Chen H., Widmann K., Ditmire T. // Phys. Rev. Lett. 2008. V. 101. P. 015002. https://doi.org/10.1103/PhysRevLett.101.015002
  4. Hidding B., Karger O., Königstein T., Pretzler G., Manahan G.G., McKenna P., Gray R., Wilson R., Wiggins S.M., Welsh G.H., Beaton A., Delinikolas P., Jaroszynski D.A., Rosenzweig J.B., Karmakar A., Ferlet-Cavrois V., Costantino A., Muschitiello M., Daly E. // Sci. Rep. 2016. V. 7. P. 42354. https://doi.org/10.1038/srep42354
  5. Wilks S.C., Langdon A.B., Cowan T.E., Roth M., Singh M., Hatchett S., Key M.H., Pennington D., MacKinnon A., Snavely R.A. // Phys. Plasmas. 2001. V. 8. P. 542. https://doi.org/10.1063/1.1333697
  6. Poole P.L., Obst L., Cochran G.E., Metzkes J., Schlenvoigt H.-P., Prencipe I., Kluge T., Cowan T., Schramm U., Schumacher D.W., Zeil K. // New J. Phys. 2018. V. 20. P. 013019. https://doi.org/10.1088/1367-2630/aa9d47
  7. Esirkepov T., Borghesi M., Bulanov S.V., Mourou G., Tajima T. // Phys. Rev. Lett. 2004. V. 92. P. 175003. https://doi.org/10.1103/PhysRevLett.92.175003
  8. d’Humires E., Lefebvre E., Gremillet L., Malka V. // Phys. Plasmas. 2005. V. 12. P. 062704. https://doi.org/10.1063/1.1927097
  9. Yin L., Albright B.J., Hegelich B.M., Fernandez J.C. // Laser Part. Beams. 2006. V. 24. P. 291. https://doi.org/10.1017/S0263034606060459
  10. Macchi A., Borghesi M., Passoni M. // Rev. Mod. Phys. 2013. V. 85. P. 751. https://doi.org/10.1103/RevModPhys.85.751
  11. Higginson A., Gray R.J., King M., Dance R.J., Williamson S.D.R., Butler N.M.H., Wilson R., Capdessus R., Armstrong C., Green J.S., Hawkes S.J., Martin P., Wei W.Q., Mirfayzi S.R., Yuan X.H., Kar S., Borghesi M., Clarke R.J., Neely D., McKenna P. // Nature Commun. 2018. V. 9. P. 724. https://doi.org/10.1038/s41467-018-03063-9
  12. Dover N.P., Ziegler T., Assenbaum S., Bernert C., Bock S., Brack F.E., Cowan T.E., Ditter E.J., Garten M., Gaus L., Goethel I., Hicks G.S., Kiriyama H., Kluge T., Koga J.K., Kon A., Kondo K., Kraft S., Kroll F., Lowe H.F., Metzkes N.J., Miyatake T., Najmudin Z., Puschel T., Rehwald M., Reimold M., Sakaki H., Schlenvoigt H.P., Shiokawa K., Umlandt M.E.P., Schramm U., Zeil K., Nishiuchi M. // Light Sci. Appl. 2023. V. 12. P. 71. https://doi.org/10.1038/s41377-023-01083-9
  13. Wagner F., Deppert O., Brabetz C., Fiala P., Kleinschmidt A., Poth P., Schanz V.A., Tebartz A., Zielbauer B., Roth M., Stohlker T., Bagnoud V. // Phys. Rev. Lett. 2016. V. 166. P. 205002. https://doi.org/10.1103/PhysRevLett.116.205002
  14. Liu Z., Gao Y., Wu Q., Pan Z., Liang Y., Song T., Xu T., Shou Y., Zhang Y., Chen H., Han Q., Hua C., Chen X., Xu S., Mei Z., Wang P., Peng Z., Zhao J., Chen S., Zhao Y., Yan X., Ma W. // Phys. Plasmas. 2024. V. 31. P. 053106. https://doi.org/10.1063/5.0195634
  15. Ziegler T., Gothel I., Assenbaum S., Bernert C., Brack F.E., Cowan T.E., Dover N.P., Gaus L., Kluge T., Kraft S., Kroll F., Metzkes-Ng J., Nishiuchi M., Prencipe I., Puschel T., Rehwald M., Reimold M., Schlenvoigt H.P., Umlandt M.E.P., Vescovi M., Schramm U., Zeil K. // Nature Phys. 2024. V. 20. P. 1211. https://doi.org/10.1038/s41567-024-02505-0
  16. Levy A., Ceccotti T., D’Oliveira P., Reau F., Perdrix M., Quere F., Monot P., Bougeard M., Lagadec H., Martin P. // Optics Letters. 2007. V. 32. P. 310. https://doi.org/10.1364/ol.32.000310
  17. Kim I.J., Choi I.W., Janulewicz K.A., Lee J. // J. Optical Society of Korea. 2009. V. 13 (1). P. 15. https://doi.org/10.3807/JOSK.2009.13.1.015
  18. Du D., Liu X., Korn G., Squier J., Mourou G. // Appl. Phys. Lett. 1994. V. 64. P. 3071. https://doi.org/10.1063/1.111350
  19. Kim I.J., Choi I., Lee S.K., Janulewicz K.A., Sung J.H., Yu T.J., Kim H.T., Yun H., Jeong T.M., Lee J. // Appl. Phys. B. 2011. V. 104(1). P. 81. https://doi.org/10.1007/s00340-011-4584-2
  20. Mikhailova J.M., Buck A., Borot A., Schmidt K., Sears C., Tsakiris G.D., Krausz F., Veisz L. // Opt. Lett. 2011. V. 36. P. 3145. https://doi.org/10.1364/OL.36.003145
  21. Higginson A., Wilson R., Goodman J., King M., Dance R.J., Butler N.M.H., Armstrong C.D., Notley M., Carroll D.C., Fang Y., Yuan X.H., Neely D., Gray R.J., McKenna P. // Plasma Phys. Control. Fusion. 2021. V. 63. P. 114001. https://doi.org/10.1088/1361-6587/ac2035
  22. Padda H., King M., Gray R.J., Powell H.W., Gonzalez-Izquierdo B., Stockhaussen L.C., Wilson R., Caroll D.C., Dance R.J., MacLellan D.A., Yuan X.H., Butler N.M.H., Capdessus R., Borghesi M., Neely D., McKenna P. // Phys. Plasmas. 2016. V. 23. P. 063116. https://doi.org/10.1063/1.4954654
  23. Сафронов К.В, Вихляев Д.А., Владимиров А.Г., Гаврилов Д.С., Горохов С.А., Какшин А.Г., Лобода Е.А. Лыков В.А., Мокичева Е.С., Потапов А.В., Пронин В.А., Сапрыкин В.Н., Толстоухов П.А., Чефонов О.В., Чижков М.Н. // Физика Плазмы. 2010. Т. 36. С. 478. https://doi.org/10.1134/S1063780X10050119
  24. Zeil K., Kraft S.D., Bock S., Bussmann M., Cowan T.E., Kluge T., Metzkes-Ng J., Richter T., Sauerbrey R., Schramm U. // New J. Phys. 2010. V. 12. P. 045015. https://doi.org/10.1088/1367-2630/12/4/045015
  25. Fourmaux S., Buffechoux S., Albertazzi B., Capelli D., Levy A., Gnedyuk S., Lecherbourg L., Lassonde P., Payeur S., Anitici P., Pepin H., Marjoribanks R.S., Fuchs J., Kieffer J.C. // Phys. Plasmas. 2013. V. 20. P. 013110. https://doi.org/10.1063/1.4789748
  26. Carrie M., Lefebvre E., Flacco A., Malka V. // Nuclear Instrum. Methods Phys. Res. A. 2010. V. 620 (1). P. 36–40. https://doi.org/10.1016/j.nima.2010.01.056
  27. Mora P. // Phys. Rev. Lett. 2003. V. 90. P. 185002. https://doi.org/10.1103/PhysRevLett.90.185002
  28. Wilks S.C., Kruer W.L. // IEEE J. Quantum Electron. 1997. V. 33 (11). P. 1954. https://doi.org/10.1109/3.641310
  29. Daido H., Nishiuchi M., Pirozhkov A.S. // Reports Prog. Phys. 2012. V. 75. P. 056401. https://doi.org/10.1088/0034-4885/75/5/056401
  30. Levy D., Andriyash I.A., Haessler S., Kaur J., Ouillé M., Flacco A., Kroupp E., Malka V., Lopez-Martens R. // Phys. Rev. Accelerated Beams. 2022. V. 25. P. 093402. https://doi.org/10.1103/PhysRevAccelBeams.25.093402
  31. Bychenkov V.Yu., Singh P.K., Ahmed H., Kakolee K.F., Scullion C., Jeong T.W., Hadjisolomou P., Alejo A., Kar S., Borghesi M., Ter-Avetisyan S. // Phys. Plasmas. 2017. V. 24. P. 010704. https://doi.org/10.1063/1.4975082
  32. Ter-Avetisyan S., Varmazyar P., Singh P.K., Son J.G., Fule M., Bychenkov V.Yu., Farkas B., Nelissen K., Mondal S., Papp D., Borzsonyi A., Csontos J., Lecz Z., Somoskoi T., Toth L., Andriy V., Margarone D., Necas A., Mourou G., Szabo G., Osvay K. // Plasma Phys. Control. Fusion. 2023. V. 65. P. 085012. https://doi.org/10.1088/1361-6587/acde0a
  33. Safronov K.V., Vikhlaev D.A., Vladimiriv A.G., Gavrilov D.S., Gorokhov S.A., Kakshin A.G., Loboda E.A., Lykov V.A., Mokicheva E.S., Potapov A.V., Pronin V.A., Saprykin V.N., Tolstoukhov P.A., Chefonov O.V., Chizhkov M.N. // Plasma Phys. Rep. 2010. V. 36. P.443 https://doi.org/10.1134/S0021364008230033
  34. Green J.S., Robinson A.P.L., Booth N., Carroll D.C., Dance R.J., Gray R.J., MacLellan D.A., McKenna P., Murphy C.D., Rusby D., Wilson L. // Appl. Phys. Lett. 2014. V. 104. P. 214101. https://doi.org/10.1063/1.4879641

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».