Formation of active particles in methane, nitrogen, and oxygen mixtures under simultaneous action of an electric field and an electron beam
- Autores: Tereshonok D.V.1, Aleksandrov N.L.1,2, Babaeva N.Y.1, Konovalov V.P.1, Naidis G.V.1, Panov V.A.1, Ugryumov A.V.3
-
Afiliações:
- Joint Institute for High Temperatures, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- TVEL Joint Stock Company
- Edição: Volume 50, Nº 10 (2024)
- Páginas: 1269-1284
- Seção: LOW TEMPERATURE PLASMA
- URL: https://journals.rcsi.science/0367-2921/article/view/284543
- DOI: https://doi.org/10.31857/S0367292124100117
- EDN: https://elibrary.ru/FCJPLK
- ID: 284543
Citar
Texto integral
Resumo
The paper presents a computational and theoretical analysis of kinetic processes in methane, nitrogen, and oxygen mixtures for non-self-sustaining direct current discharges supported by an electron beam. Within an approximate approach, the kinetic coefficients in plasma under the simultaneous action of an applied electric field and an electron beam are determined. In a zero-dimensional (spatially homogeneous) approximation, the quasi-stationary composition of charged particles is calculated. The rate constants for generation of chemically active neutral particles of various types in plasma are calculated along with the energy efficiencies (G-factors) of the production of these particles depending on the magnitudes of the reduced electric field and the beam current. Similarity rules are proposed for the relation between the rates of production of active particles under the action of an electric field and an electron beam. It is shown that, by varying the applied field, it is possible to influence the composition of the produced hydrocarbon radicals.
Palavras-chave
Sobre autores
D. Tereshonok
Joint Institute for High Temperatures, Russian Academy of Sciences
Autor responsável pela correspondência
Email: tereshonokd@gmail.com
Rússia, Moscow
N. Aleksandrov
Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Email: tereshonokd@gmail.com
Rússia, Moscow; Dolgoprudny
N. Babaeva
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: tereshonokd@gmail.com
Rússia, Moscow
V. Konovalov
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: tereshonokd@gmail.com
Rússia, Moscow
G. Naidis
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: tereshonokd@gmail.com
Rússia, Moscow
V. Panov
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: tereshonokd@gmail.com
Rússia, Moscow
A. Ugryumov
TVEL Joint Stock Company
Email: tereshonokd@gmail.com
Rússia, Moscow
Bibliografia
- Starikovskaia S.M. // J. Phys.D: Appl. Phys. 2006. V. 39. P. 265. doi: 10.1088/0022-3727/39/16/r01.
- Popov N.A. // High Temp. 2007. V. 45. P. 261. doi: 10.1134/S0018151X07020174.
- Fridman A. Plasma Chemistry. Cambridge: Cambridge University Press, 2008.
- Adamovich I.V., Choi I., Jiang N., Kim J.-H., Keshav S., Lempert W.R., Mintusov E., Nishihara M., Samimy M., Uddi M. // Plasma Sources Sci. Technol. 2009. V. 18. P. 034018. doi: 10.1088/0963-0252/18/3/034018.
- Starikovskiy A., Aleksandrov N. // Progr. Energy Comb. Sci. 2013. V.39. P. 61. doi: 10.1016/j.pecs.2012.05.003.
- Starikovskaia S.M. // J. Phys. D: Appl. Phys. 2014. V. 47. 353001. doi: 10.1088/0022-3727/47/35/353001.
- Ju Y., Sun W. // Progr. Energy Comb. Sci. 2015. V. 48. P. 21. doi: 10.1016/j.pecs.2014.12.002.
- Adamovich I.V., Lempert W.R. // Plasma Phys. Contr. Fusion. 2015. V. 57. P. 014001. doi: 10.1088/0741-3335/57/1/014001.
- Tropina A.A., Shneider M.N., Miles R.B. // Combust. Sci. Technol. 2016. V. 188. P. 831. doi: 10.1080/00102202.2015.1125347.
- Yang S., Nagaraja S., Sun W., Yang V. // J. Phys. D: Appl. Phys. 2017. V. 50. 433001. doi: 10.1088/1361-6463/aa87ee.
- Snoeckx R., Rabinovich A., Dobrynin D., Bogaerts A., Fridman A. // Plasma Proc. Polim. 2017. V. 14. 1600115. doi: 10.1002/ppap.201600115.
- Панов В.А., Абрамов А.Г., Угрюмов А.В. // УПФ. 2022. № 10. С. 534. doi: 10.51368/2307-4469-2022-10-6-534-576.
- Lee D.H., Kang H., Kim Y., Song H., Lee H., Choi J., Kim K.-T., Song Y.-H. // Fuel Process. Technol. 2023. V. 247. P. 107761. doi: 10.1016/j.fuproc.2023.107761.
- Шарафутдинов Р.Г., Константинов В.О., Федосеев В.И., Щукин В.Г. // Прикладная физика. 2017. № 2. С. 13.
- Sharafutdinov R.G.; Konstantinov V.O.; Fedoseev V.I.; Shchukin V.G. // High Energy Chem. 2018. V. 52. P. 330. doi: 10.1134/S001814391804015X.
- Sharafutdinov R.G., Konstantinov V.O., Fedoseev V.I., Shchukin V.G., Gorodetskii S.A. // Pet. Chem. 2019. V. 59 (Suppl. 1). S45. doi: 10.1134/S0965544119130127.
- Kuznetsov D.L., Uvarin V.V., Filatov I.E. // J. Phys. D: Appl. Phys. 2021. V. 54. P. 435203. doi: 10.1088/1361-6463/ac17b2.
- Ponomarev A.V. // Chem. Eng. J. Adv. 2023. V. 15. P. 100513. doi: 10.1016/j.ceja.2023.100513.
- Пушкарев А.И., Сазонов Р.В. // Химия высоких энергий. 2009. Т. 43. № 3. С. 202.
- Sun J., Chen Q., Guo Y., Zhou Z., Song Y. // J. Energy Chem. 2020. V. 46. P. 133. doi: 10.1016/j.jechem.2019.11.002.
- Sun J., Chen Q., Yang X., Koel B.E. // J. Phys. D: Appl. Phys. 2020. V. 53. 064001. doi: 10.1088/1361-6463/ab57dc.
- Hagelaar G.J.M., Pitchford L.C. // Plasma Sources Sci. Technol. 2005. V. 14. P. 722. doi: 10.1088/0963-0252/14/4/011.
- Коновалов В.П. // ЖТФ. 1993. Т. 63. № 3. С. 23.
- Коновалов В.П. // Физика плазмы. 2023. T. 49. C. 296. doi: 10.31857/S0367292122601175.
- Shcherbanev S.A., Popov N.A., Starikovskaia S.M. // Combust. Flame. 2017. V. 176. P. 272–284. doi: 10.1016/j.combustflame.2016.07.035.
- Adamovich I.V., Li T., Lempert W.R. // Philos. Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci. 2015. V. 373. P. 20140336. doi: 10.1098/rsta.2014.0336.
- Kim W., Mungal M.G., Cappelli M.A. // Combust. Flame. 2010. V. 157. P. 374–383. doi: 10.1016/j.combustflame.2009.06.016.
- Song M.Y., Yoon J.S., Cho H., Itikawa Y., Grzegorz P., Karwasz G.P., Kokoouline V., Nakamura Y., Tennyson J. // J. Phys. Chem. Ref. Data. 2015. V. 44. P. 023101. doi: 10.1063/1.4918630.
- Gadoum A., Benyoucef D. // IEEE Trans. Plasma Sci. 2019. V. 47. P. 1505. doi: 10.1109/TPS.2018.2885610.
- Winkler R., Loffhagen D., Sigeneger F. // Appl. Surf. Sci. 2002. V. 192. P. 50. doi: 10.1016/S0169-4332(02)00020-X.
- Ionin A.A., Kochetov I.V., Napartovich A.P., Yuryshev N.N. // J. Phys. D: Appl. Phys. 2007. V. 40. P. 25. doi: 10.1088/0022-3727/40/2/r01
- Александров Н.Л., Кочетов И.В. // ТВТ. 1987. Т. 25. С. 1062.
- Popov N.A. // Plasma Sources Sci. Technol. 2016. V. 25. P. 043002. doi: 10.1088/0963-0252/25/4/043002.
- Alves L.L., Coche P., Ridenti M.A., Guerra V. // Eur. Phys. J. D. 2016. V. 70. P. 124. doi: 10.1140/epjd/e2016-70102-1.
- Kossyi I.A., Kostinsky A.Yu., Matveyev A.A., Silakov V.P. // Plasma Sources Sci. Technol. 1992. V. 1. P. 207. doi: 10.1088/0963-0252/1/3/011.
- Мак-Ивен М., Филипс Л. Химия атмосферы. М.: Мир, 1978.
- Florescu-Mitchell A.I., Mitchell J.B.A. // Phys. Rep. 2006. V. 430. P. 277. doi: 10.1016/j.physrep.2006.04.002.
- Millar T.J., Farquhar P.R.A., Willacy K. // Astron. Astrophys. Suppl. Ser. 1997. V. 121. P. 139. doi: 10.1051/aas:1997118.
- Полак Л.С., Овсянников А.А., Словецкий Д.И., Вурзель Ф.Б. Теоретическая и прикладная плазмохимия. М.: Наука, 1975.
Arquivos suplementares
