Formation of active particles in methane, nitrogen, and oxygen mixtures under simultaneous action of an electric field and an electron beam

Capa

Citar

Texto integral

Resumo

The paper presents a computational and theoretical analysis of kinetic processes in methane, nitrogen, and oxygen mixtures for non-self-sustaining direct current discharges supported by an electron beam. Within an approximate approach, the kinetic coefficients in plasma under the simultaneous action of an applied electric field and an electron beam are determined. In a zero-dimensional (spatially homogeneous) approximation, the quasi-stationary composition of charged particles is calculated. The rate constants for generation of chemically active neutral particles of various types in plasma are calculated along with the energy efficiencies (G-factors) of the production of these particles depending on the magnitudes of the reduced electric field and the beam current. Similarity rules are proposed for the relation between the rates of production of active particles under the action of an electric field and an electron beam. It is shown that, by varying the applied field, it is possible to influence the composition of the produced hydrocarbon radicals.

Sobre autores

D. Tereshonok

Joint Institute for High Temperatures, Russian Academy of Sciences

Autor responsável pela correspondência
Email: tereshonokd@gmail.com
Rússia, Moscow

N. Aleksandrov

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: tereshonokd@gmail.com
Rússia, Moscow; Dolgoprudny

N. Babaeva

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: tereshonokd@gmail.com
Rússia, Moscow

V. Konovalov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: tereshonokd@gmail.com
Rússia, Moscow

G. Naidis

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: tereshonokd@gmail.com
Rússia, Moscow

V. Panov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: tereshonokd@gmail.com
Rússia, Moscow

A. Ugryumov

TVEL Joint Stock Company

Email: tereshonokd@gmail.com
Rússia, Moscow

Bibliografia

  1. Starikovskaia S.M. // J. Phys.D: Appl. Phys. 2006. V. 39. P. 265. doi: 10.1088/0022-3727/39/16/r01.
  2. Popov N.A. // High Temp. 2007. V. 45. P. 261. doi: 10.1134/S0018151X07020174.
  3. Fridman A. Plasma Chemistry. Cambridge: Cambridge University Press, 2008.
  4. Adamovich I.V., Choi I., Jiang N., Kim J.-H., Keshav S., Lempert W.R., Mintusov E., Nishihara M., Samimy M., Uddi M. // Plasma Sources Sci. Technol. 2009. V. 18. P. 034018. doi: 10.1088/0963-0252/18/3/034018.
  5. Starikovskiy A., Aleksandrov N. // Progr. Energy Comb. Sci. 2013. V.39. P. 61. doi: 10.1016/j.pecs.2012.05.003.
  6. Starikovskaia S.M. // J. Phys. D: Appl. Phys. 2014. V. 47. 353001. doi: 10.1088/0022-3727/47/35/353001.
  7. Ju Y., Sun W. // Progr. Energy Comb. Sci. 2015. V. 48. P. 21. doi: 10.1016/j.pecs.2014.12.002.
  8. Adamovich I.V., Lempert W.R. // Plasma Phys. Contr. Fusion. 2015. V. 57. P. 014001. doi: 10.1088/0741-3335/57/1/014001.
  9. Tropina A.A., Shneider M.N., Miles R.B. // Combust. Sci. Technol. 2016. V. 188. P. 831. doi: 10.1080/00102202.2015.1125347.
  10. Yang S., Nagaraja S., Sun W., Yang V. // J. Phys. D: Appl. Phys. 2017. V. 50. 433001. doi: 10.1088/1361-6463/aa87ee.
  11. Snoeckx R., Rabinovich A., Dobrynin D., Bogaerts A., Fridman A. // Plasma Proc. Polim. 2017. V. 14. 1600115. doi: 10.1002/ppap.201600115.
  12. Панов В.А., Абрамов А.Г., Угрюмов А.В. // УПФ. 2022. № 10. С. 534. doi: 10.51368/2307-4469-2022-10-6-534-576.
  13. Lee D.H., Kang H., Kim Y., Song H., Lee H., Choi J., Kim K.-T., Song Y.-H. // Fuel Process. Technol. 2023. V. 247. P. 107761. doi: 10.1016/j.fuproc.2023.107761.
  14. Шарафутдинов Р.Г., Константинов В.О., Федосеев В.И., Щукин В.Г. // Прикладная физика. 2017. № 2. С. 13.
  15. Sharafutdinov R.G.; Konstantinov V.O.; Fedoseev V.I.; Shchukin V.G. // High Energy Chem. 2018. V. 52. P. 330. doi: 10.1134/S001814391804015X.
  16. Sharafutdinov R.G., Konstantinov V.O., Fedoseev V.I., Shchukin V.G., Gorodetskii S.A. // Pet. Chem. 2019. V. 59 (Suppl. 1). S45. doi: 10.1134/S0965544119130127.
  17. Kuznetsov D.L., Uvarin V.V., Filatov I.E. // J. Phys. D: Appl. Phys. 2021. V. 54. P. 435203. doi: 10.1088/1361-6463/ac17b2.
  18. Ponomarev A.V. // Chem. Eng. J. Adv. 2023. V. 15. P. 100513. doi: 10.1016/j.ceja.2023.100513.
  19. Пушкарев А.И., Сазонов Р.В. // Химия высоких энергий. 2009. Т. 43. № 3. С. 202.
  20. Sun J., Chen Q., Guo Y., Zhou Z., Song Y. // J. Energy Chem. 2020. V. 46. P. 133. doi: 10.1016/j.jechem.2019.11.002.
  21. Sun J., Chen Q., Yang X., Koel B.E. // J. Phys. D: Appl. Phys. 2020. V. 53. 064001. doi: 10.1088/1361-6463/ab57dc.
  22. Hagelaar G.J.M., Pitchford L.C. // Plasma Sources Sci. Technol. 2005. V. 14. P. 722. doi: 10.1088/0963-0252/14/4/011.
  23. Коновалов В.П. // ЖТФ. 1993. Т. 63. № 3. С. 23.
  24. Коновалов В.П. // Физика плазмы. 2023. T. 49. C. 296. doi: 10.31857/S0367292122601175.
  25. Shcherbanev S.A., Popov N.A., Starikovskaia S.M. // Combust. Flame. 2017. V. 176. P. 272–284. doi: 10.1016/j.combustflame.2016.07.035.
  26. Adamovich I.V., Li T., Lempert W.R. // Philos. Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci. 2015. V. 373. P. 20140336. doi: 10.1098/rsta.2014.0336.
  27. Kim W., Mungal M.G., Cappelli M.A. // Combust. Flame. 2010. V. 157. P. 374–383. doi: 10.1016/j.combustflame.2009.06.016.
  28. Song M.Y., Yoon J.S., Cho H., Itikawa Y., Grzegorz P., Karwasz G.P., Kokoouline V., Nakamura Y., Tennyson J. // J. Phys. Chem. Ref. Data. 2015. V. 44. P. 023101. doi: 10.1063/1.4918630.
  29. Gadoum A., Benyoucef D. // IEEE Trans. Plasma Sci. 2019. V. 47. P. 1505. doi: 10.1109/TPS.2018.2885610.
  30. Winkler R., Loffhagen D., Sigeneger F. // Appl. Surf. Sci. 2002. V. 192. P. 50. doi: 10.1016/S0169-4332(02)00020-X.
  31. Ionin A.A., Kochetov I.V., Napartovich A.P., Yuryshev N.N. // J. Phys. D: Appl. Phys. 2007. V. 40. P. 25. doi: 10.1088/0022-3727/40/2/r01
  32. Александров Н.Л., Кочетов И.В. // ТВТ. 1987. Т. 25. С. 1062.
  33. Popov N.A. // Plasma Sources Sci. Technol. 2016. V. 25. P. 043002. doi: 10.1088/0963-0252/25/4/043002.
  34. Alves L.L., Coche P., Ridenti M.A., Guerra V. // Eur. Phys. J. D. 2016. V. 70. P. 124. doi: 10.1140/epjd/e2016-70102-1.
  35. Kossyi I.A., Kostinsky A.Yu., Matveyev A.A., Silakov V.P. // Plasma Sources Sci. Technol. 1992. V. 1. P. 207. doi: 10.1088/0963-0252/1/3/011.
  36. Мак-Ивен М., Филипс Л. Химия атмосферы. М.: Мир, 1978.
  37. Florescu-Mitchell A.I., Mitchell J.B.A. // Phys. Rep. 2006. V. 430. P. 277. doi: 10.1016/j.physrep.2006.04.002.
  38. Millar T.J., Farquhar P.R.A., Willacy K. // Astron. Astrophys. Suppl. Ser. 1997. V. 121. P. 139. doi: 10.1051/aas:1997118.
  39. Полак Л.С., Овсянников А.А., Словецкий Д.И., Вурзель Ф.Б. Теоретическая и прикладная плазмохимия. М.: Наука, 1975.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».