Numerical study of structural parameters of dust particle chains of different lengths

Cover Page

Cite item

Full Text

Abstract

The results of a numerical study of the configuration of chains of dust particles levitating in a gasdischarge plasma are presented. The studies have been carried out using an iterative model that self-consistently describes the motion of ions and dust particles under the action of an external electric field, an electric field (Coulomb) of each charged dust particle, a field of the plasma space charge (ions and electrons), which screens the charges of dust particles, and gravity for dust particles. The structural parameters of the chains of dust particles were calculated for different numbers of particles in them. It was found that when new particles are added to the chain, the center of the chain rises above the lower electrode. This is due to both a decrease in the charges of the lower dust particles due to the focusing of positively charged ions behind the upper particle, and a significant decrease in the ion drag force on the lower particles of the chain as a result of structural rearrangement of the entire chain. It is shown that the reduced charge of the chains decreases, and the reduced length of the chains has a maximum depending on the number of particles.

About the authors

M. V. Sal’nikov

Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: salnikovitsbras@gmail.com
Russian Federation, Novosibirsk

A. V. Fedoseev

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: salnikovitsbras@gmail.com
Russian Federation, Moscow

M. M. Vasil’ev

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: salnikovitsbras@gmail.com
Russian Federation, Moscow

O. F. Petrov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: salnikovitsbras@gmail.com
Russian Federation, Moscow

References

  1. Shukla P.K. // Phys. Plasmas. 2001. V. 8. P. 1791.
  2. Merlino R.L., Goree J.A. // Phys. Today. 2004. V. 57. P. 32.
  3. Fortov V.E., Ivlev A. V., Khrapak S.A., Khrapak A.G., Morfill G.E. // Phys. Rep. 2005. V. 421. P. 1.
  4. Ishihara O. // J. Phys. D. 2007. V. 40. P. 121.
  5. Ludwig P., Thomsen H., Balzer K., Filinov A., Bonitz M. // Plasma Phys. Controlled Fusion, 2010. V. 52. P. 124013.
  6. Selwyn G.S. // Plasma Sources Sci. Technology. 1994. V. 3. P. 340.
  7. Melzer A., Trottenberg T., Piel A. // Phys. Lett. A. 1994. V. 191. P. 301.
  8. Chu J.H., Lin I. // Phys. Rev. Lett., 1994. V. 72. P. 4009.
  9. Жаховский В.В., Молотков В.И., Нефедов А.П., Торчинский В.М., Храпак А.Г., Фортов В.Е. // Письма ЖЭТФ. 1997. Т. 66. С. 392.
  10. Petrov O.F., Statsenko K.B., Vasiliev M.M. // Sci. Rep. 2022. V. 12. P. 8618.
  11. Boltnev R.E., VasilievM.M., Petrov O.F. // Sci. Rep. 2019. V. 9. P. 3261.
  12. Petrov O.F., Boltnev R.E., VasilievM.M. // Sci. Rep. 2022. V. 12. P. 6085.
  13. Karasev V. Yu., DzlievaE. S., Eikhval’d A.I. // Geometrical and Applied Optics. 2006. V. 101. P. 493.
  14. Carmona-Reyes J., Schmoke J., CookM., Kong J., Hyde T.W. // 16th IEEE Internat. Pulsed Power Confer., Albuquerque, NM, USA, 2007. P. 1581.
  15. Hartmann P., Matthews L., Kostadinova E., Hyde T., RosenbergM. // APS Annual Gaseous Electronics Meeting Abstracts, MW1.009
  16. Takahashi K., Oishi T., Shimomai K.-I., Hayashi Y., Nishino S. // Phys. Rev. E. 1998. V. 58 P. 7805.
  17. Hyde T.W., Kong J., Matthews L.S. // Phys. Rev. E. V. 2013. V. 87. P. 053106.
  18. Polyakov D.N., Vasilyak L.M., Shumova V.V. // Surface Engineering and Applied Electrochemistry. 2015. V. 51. P. 143.
  19. Yaroshenko, V., Pustylnik, M. // Molecules. V. 26, 308, 2021.
  20. Ivlev A.V., Thoma M.H., Rath C., Joyce G., Morfill G.E. // Phys. Rev. Lett. 2011. V. 106. P. 155001.
  21. FedoseevA.V., Litvinenko V.V., VasilievaE.V., Vasiliev M.M., Petrov O.F. // Sci. Rep. 2024. V. 14 . P. 13252.
  22. Yousef R., Chen M., Matthews L.S., Hyde T.W. // arXiv Preprint. 2016. 1607.03177.
  23. Miloch W.J., BlockD. // Phys. Plasmas. 2012. V. 19. P. 123703.
  24. Block D., Miloch J.W. // Plasma Phys. Controlled Fusion. 2015. V. 57. P. 014019.
  25. Hutchinson I.H. // Phys. Plasmas. 2011. V. 18. P. 032111.
  26. Matthews L.S., Sanford D.L., Kostadinova E.G., Ashrafi K.S., Guay E., Hyde T.W. // Phys. Plasmas. 2020. V. 27. P. 023703.
  27. Vermillion K., Sanford D., Matthews L., Hartmann P., Rosenberg M., Kostadinova E., Carmona-Reyes J., Hyde T., Lipaev A.M., Usachev A.D., Zobnin A.V., Petrov O.F., Thoma M.H., PustylnikM.Y., ThomasH.M., Ovchinin A. // Phys. Plasmas. 2022. V. 29. P. 023701.
  28. Fedoseev A.V., Salnikov M.V., Vasiliev M.M., Petrov O.F. // Phys. Rev. E. 2022. V. 106. P. 0252042022.
  29. Fedoseev A.V., Salnikov M.V., Vasiliev M.M., Petrov O.F. // Phys. Plasmas. 2024. V. 31. P. 063703.
  30. Sukhinin G.I., Fedoseev A.V., Salnikov M.V., Rostom A., Vasiliev M.M., Petrov O.F. // Phys. Rev. E. 2017. V. 95. P. 063207.
  31. Fortov V.E., Khrapak A.G., Khrapak S.A., Molotkov V.I., Petrov O.F. // Physics-Uspekhi. 2004. V. 47. P. 447.
  32. Lipaev A.M., Molotkov V.I., Nefedov A.P., Petrov O.F., Torchinskii V.M., Fortov V.E., Khrapak A.G., Khrapak S.A. // J. Exp. Theor. Phys. 1997. V. 85. P. 1110.
  33. Павлов С.И., Дзлиева Е.С., Дьячков Л.Г., Новиков Л.А., Балабас М.В., Карасев В.Ю. // Физика плазмы. 2023. Т. 49. С. 995.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».