LARGE-SCALE HYDRODYNAMIC FLOWS IN MEDIA WITH VARIABLE THERMODYNAMIC CHARACTERISTICS

Capa

Citar

Texto integral

Resumo

A theory of large-scale flows in a rotating astrophysical plasma under conditions of non-trivial properties of the physical medium, which are not described by the classical hydrodynamic theory of plasma, is developed. As a first step, the theory is developed within a neutral fluid model to describe astrophysical plasma, with a subsequent generalization in mind to take into account magnetic effects. Such a model is of independent importance for studying turbulent dynamo in star-forming regions in galaxies and hydrodynamic instabilities in poorly ionized disks, for describing meridional flows below convective zones in lowmass stars and on the Sun, aswell as for studying oscillations of the Sun and stars. Therefore, the results obtained have a wider application, e.g., for describing geophysical currents. The theory is based on two key ideas developed in plasma astrophysics: the use of a shallow water model with large-scale compressibility and the use of a two-layer shallow water model. Equations for two-layer shallow water are derived taking into account rotation and the effect of flow sphericity on rotation, in which the effects of large-scale compressibility are taken into account in the upper layer. For a rotating system, dispersion relations are obtained for Poincar. waves in two-layer shallow water, taking into account large-scale compressibility; similar dispersion relations for Poincar. waves are obtained in the high-frequency limit taking into account the effect of sphericity on rotation; in the low-frequency limit, a dispersion relation is obtained for Rossby waves. It is shown that the dispersion relations for Poincar. waves, taking into account the sphericity of the flow, have a qualitatively different form, which leads to three-wave interactions of Poincar. waves and the interaction of two Poincar. waves with a Rossby wave, which are not observed in a single-layer flow of a compressible fluid. All types of three-wave interactions for the flows under consideration are studied using the method of multiscale expansions.

Sobre autores

M. Yudenkova

Space Research Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Moscow, Russia; Dolgoprudnyi, Russia

D. Klimachkov

Space Research Institute, Russian Academy of Sciences

Moscow, Russia

A. Petrosyan

Space Research Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: apetrosy@iki.rssi.ru
Moscow, Russia; Dolgoprudnyi, Russia

Bibliografia

  1. Petrosyan A., Klimachkov D., Fedotova M., Zinyakov T. // Atmosphere. 2020. V. 11. P. 314.
  2. Fedotova M., Klimachkov D., Petrosyan A. // Universe. 2021. V. 7. P. 87.
  3. Федотова М.А., Климачков Д.А., Петросян А.С. // Физика плазмы. 2023. Т. 49. С. 209.
  4. Birnstiel T., Fang M., Johansen A. // Space Sci. Rev. 2016. V. 205. P. 41.
  5. Lesur G., Ercolano B., Flock M., Lin M.-K., Yang C.C., Barranco J.A., Benitez-Llambay P., Goodman J., Johansen A., Klahr H., Laibe G., Lyra W., Marcus P., Nelson R.P., Squire J., Simon J.B., Turner N., Umurhan O.M., Youdin A.N. // arXiv preprint arXiv:2203.09821. 2022. doi: 10.48550/arXiv.2203.09821.
  6. Haberle R.M., Clancy R.T., Forget F., Smith M.D., Zurek R.W. The atmosphere and climate of Mars. Cambridge University Press, 2017.
  7. Parsons J.D. // Geophys. Res. Lett. 2000. V. 27. P. 2345.
  8. Tsytovich V.N., Ivlev A.V., Burkert A., Morfill G.E. // Astrophys. J. 2013. V. 780. P. 131.
  9. Ishiki S., Okamoto T., Inoue A.K. // Monthly Notices Royal Astron. Soc. 2018. V. 474. P. 1935.
  10. Korpi-Lagg M. J., Mac Low M. M., Gent F. A. // arXiv preprint arXiv:2401.04015. 2024. (представлена в Living Rev. Computational Astrophys.).
  11. Mac Low M. M., Klessen R. S. // Rev. Modern Phys. 2004. V. 76. P. 125.
  12. Zhou M., Zhdankin V., Kunz M.W., Loureiro N.F., Uzdensky D.A. // Astrophys. J. 2023. V. 960. P. 12.
  13. Arlt R., Urpin V. // Astron. Astrophys. 2004. V. 426. P. 755.
  14. Nelson R.P., Gressel O., Umurhan O.M. // Monthly Notices Royal Astronom. Soc. 2013. V. 435. P. 2610.
  15. Goldreich P., Schubert G. // Astrophys. J. 1967. V. 150. P. 571.
  16. Klahr H., Hubbard A. // Astrophys. J. 2014. V. 788. P. 21.
  17. Lyra W. // Astrophys. J. 2014. V. 789. P. 77.
  18. Barranco J.A., Marcus P.S. // Astrophys. J. 2005. V. 623. P. 1157.
  19. Marcus P.S., Pei S., Jiang C.H., Hassanzadeh P. // Phys. Rev. Lett. 2013. V. 111. P. 084501.
  20. Marcus P.S., Pei S., Jiang C.H., Barranco J.A., Hassanzadeh P., Lecoanet D. // The Astrophysical Journal. 2015. V. 808. №. 1. P. 87.
  21. Marcus P.S., Pei S., Jiang C.H., Barranco J.A. // Astrophys. J. 2016. V. 833. P. 148.
  22. Korre L., Featherstone N.A. // arXiv preprint arXiv:2401.10675. 2024. (представлена в Astrophys. J.).
  23. McIntyre M.E., Hughes D.W., Rosner R., Weiss N.O. The Solar Tachocline. Cambridge University Press, 2007.
  24. Кокс Д.П., Памятных А.А. Теория звездных пульсаций. Мир, 1983.
  25. L¨optien B., Gizon L., Birch A.C., Schou J., Proxauf B., Duvall Jr T.L., Bogart R.S., Christensen U.R. // Nature Astron. 2018. V. 2. P. 568.
  26. Онищенко О.Г., Похотелов О.А., Астафьева Н.М., Хортон В., Федун В.Н. // УФН. 2020. Т. 190. С. 732.
  27. Timmermans M.L.E., Lister J.R., Huppert H.E. // J. Fluid Mechanics. 2001. V. 445. P. 305.
  28. Карельский К.В., Петросян А.С., Черняк А.В. // ЖЭТФ. 2012. Т. 141. С. 1206.
  29. Карельский К.В., Петросян А.С., Черняк А.В. // ЖЭТФ. 2013. Т. 143. С. 779.
  30. Chernyak A., Karelsky K., Petrosyan A. // Physica Scripta. 2013. V. 155. P. 014041.
  31. Юденкова М.А., Климачков Д.А., Петросян А.С. // ЖЭТФ. 2022. Т. 161. С. 388.
  32. Vallis G.K. Atmospheric and oceanic fluid dynamics. Cambridge University Press, 2017. P. 124.
  33. Федотова М.А., Климачков Д.А., Петросян А.С. // Физика плазмы. 2020. Т. 46. С. 57.
  34. Balbus S.A., Hawley J.F. // Rev. Modern Phys. 1998. V.70. P. 1.
  35. Armitage P.J. // Ann. Rev. Astro. Astrophys. 2011. V.49. P. 195.
  36. Шакура Н.И. Аккреционные процессы в астрофизике. М.: Физматлит, 2016.
  37. Miesch M.S. // Living Rev. Solar Phys. 2005. V. 2. P. 1.
  38. Shebalin J.V. // Geophys. Astrophys. Fluid Dynamics. 2013. V. 107. P.411.
  39. Favier B.F.N., Godeferd F.S., Cambon C. // Geophys. Astrophys. Fluid Dynamics. 2012. V. 106. P. 89.
  40. Tobias S.M., Diamond P.H., Hughes D.W. // Astrophys. J. Lett. 2007. V 667. P. 113.
  41. Balk A.M. // Astrophys. J. 2014. V. 796. P. 143.
  42. Зиняков Т.А., Петросян А.С. // Письма ЖЭТФ. 2018. Т. 108. С. 75.
  43. Зиняков Т.А., Петросян А.С. // Письма ЖЭТФ. 2020. Т. 111. С. 65.
  44. Сиразов Р.А., Петросян А.С. // Письма ЖЭТФ. 2019. Т. 110.№5. С. 314.
  45. Gilman P.A. // Astrophys. J. 2000. V. 544. P. 79.
  46. Heng K., Spitkovsky A. // Astrophys. J. 2009. V. 703. P. 1819.
  47. Zaqarashvili T.V., Oliver R., Ballester J.L. // Astrophys J. 2009. V. 691. P. 41.
  48. Климачков Д.А., Петросян А.С. // ЖЭТФ. 2016. Т. 149. С. 965.
  49. Климачков Д.А., Петросян А.С. // ЖЭТФ. 2017. Т. 152. С. 705.
  50. Климачков Д.А., Петросян А.С. // ЖЭТФ. 2018. Т. 154. С. 1239.
  51. Miesch M.S. // Astrophys. J. 2001. Т. 562. С. 1058.
  52. Miesch M.S. // Astrophys. J. 2003. Т. 586. С. 663.
  53. Федотова М.А., Петросян А.С. // ЖЭТФ. 2020. Т. 158. С. 374.
  54. Федотова М.А., Петросян А.С. // ЖЭТФ. 2020. Т. 158. С. 1188.
  55. Latter H.N., Papaloizou J. // Monthly Notices Royal Astronom. Soc. 2017. V. 472. P. 1432.
  56. Almgren A.S., Bell J.B., Nonaka A., Zingale M. // Computing in Science & Engineering. 2009. V. 11. P. 24.
  57. Ballester J.L., Alexeev I., Collados M., Downes T., Pfaff R.F., Gilbert H., Khodachenko M., Khomenko E., Shaikhislamov I.F., Soler R., V?zquez-Semadeni E., Zaqarashvili T. // Space Sci. Rev. 2018. V. 214. P. 1.
  58. Leake J.E., DeVore C.R., Thayer J.P., Burns A.G., Crowley G., Gilbert H.R., Huba J.D., Krall J., Linton M.G., Lukin V.S.,Wang W. // Space Sci. Rev. 2014. V. 184. P. 107.
  59. Zeitlin V. // Nonlinear Processes Geophys. 2013. V. 20. P. 893.
  60. Zaqarashvili T.V., Albekioni M., Ballester J.L., Bekki Y., Biancofiore L., Birch A.C., Dikpati M., Gizon L., Gurgenashvili E., Heifetz E., Lanza A.F., McIntosh S.W., Ofman L., Oliver R., Proxauf B., Umurhan O.M., Yellin-Bergovoy R. // Space Sci. Rev. 2021. V. 217. P. 1.
  61. Zaqarashvili T.V., Oliver R., Ballester J.L., Shergelashvili B.M. // Astron. Astrophys. 2007. V. 470. P. 815.
  62. Zaqarashvili T.V., Oliver R., Ballester J.L., Carbonell M., Khodachenko M.L., Lammer H., Leitzinger M., Odert P. // Astron. Astrophys. 2011. V. 532. P. 139.
  63. Zaqarashvili T.V., Gurgenashvili E. // Frontiers Astron. Space Sci. 2018. V. 5. P. 7.
  64. McIntosh S.W., Cramer W.J., Pichardo Marcano M., Leamon R.J. // Nature Astronomy. 2017. V. 1. P. 1.
  65. Dikpati M., Cally P.S., McIntosh S.W., Heifetz E. // Sci. Rep. 2017. V. 7. P. 1.
  66. Dikpati M., Belucz B., Gilman P.A., McIntosh S.W. // Astrophys. J. 2018. V. 862. P. 159.
  67. Dikpati M., McIntosh S.W., Bothun G., Cally P.S., Ghosh S.S., Gilman P.A., Umurhan O.M. // Astrophys. J. 2018. V. 853. P. 144.
  68. Dikpati M., McIntosh S.W. // Space Weather. 2020. V. 18. P. e2018SW002109.
  69. Dikpati M., McIntosh S.W., Wing S. // Frontiers Astron. Space Sci. 2021. V. 8. P. 71.
  70. Worster G., Moffatt K., Batchelor G. Perspectives in Fluid Dynamics:ACollective Introduction to Current Research. Cambridge, UK: Cambridge Univ. Press, 2000. P. 393.
  71. Моффат Г. Возбуждение магнитного поля в проводящей среде. М.: Мир, 1980.
  72. Falkovich G. Fluid mechanics: A short course for physicists. Cambridge University Press, 2011.
  73. Ostrovsky L. Asymptotic Perturbation Theory of Waves. Imperial College Press, 2015. P. 18.
  74. Birnstiel T., Dullemond C.P., Brauer F. // Astron. Astrophys. 2010. V. 513. P. A79.
  75. Andrews S.M. // Ann. Rev. Astron. Astrophys. 2020. V. 58. P. 483.
  76. Umurhan O.M. // Astron. Astrophys. 2010. V. 521. P. A25.
  77. Umurhan O.M. // Astron. Astrophys. 2012. V. 543. P. A124.
  78. Sheehan D.P., Davis S.S., Cuzzi J.N., Estberg G.N. // Icarus. 1999. V. 142. P. 238.
  79. Lovelace R.V.E., Romanova M.M. // Fluid Dynamics Res. 2014. V. 46. P. 041401.
  80. Li H.F., Finn J.M., Lovelace R.V.E., Colgate S.A. // Astrophys. J. 2000. V. 533. P. 1023.
  81. Sterken V.J., Baalmann L.R., Draine B.T., Godenko E., Herbst K., Hsu H.W., Hunziker S., Izmodenov V., Lallement R., Slavin J.D. // Space Sci. Rev. 2022. V. 218. P. 71.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».