Dynamics of a Discharge Initiated by a Powerful Femtosecond Laser Pulse in Atmospheric Pressure Air in Pre-Breakdown Electrical Fields

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Numerical modeling of the dynamics of a discharge initiated by a high-power femtosecond laser pulse in air at atmospheric pressure in pre-breakdown fields was carried out. Calculations were conducted within the framework of a 1D-axisymmetric model that describes the evolution of the radial profiles of the main parameters of the discharge under study. The model includes a system of reaction that determine gas heating and a detailed description of the kinetic processes in a given discharge, as well as a system of gas-dynamic equations to describe the expansions of the heated channel. The results of calculations of the breakdown time of the discharge gap are conсistent with the measurement data over the entire studied range of electric field strengths, E = 9–17 kV/cm. It is shown that one of the key factors determining the evolution of the parameters of a given discharge is the rate of gas heating.

About the authors

N. A. Popov

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Author for correspondence.
Email: NPopov@mics.msu.su
Russian Federation, Moscow

N. A. Bogatov

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Email: NPopov@mics.msu.su
Russian Federation, Nizhny Novgorod

A. N. Bocharov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: NPopov@mics.msu.su
Russian Federation, Moscow

E. A. Mareev

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Email: NPopov@mics.msu.su
Russian Federation, Nizhny Novgorod

References

  1. Zhao X.M., Diels J.-C., Wang C.Y., Elizondo J.M. // IEEE J. Quantum Electron. 1995. V. 31. P. 599.
  2. Braun A., Korn G., Liu X., Du D., Squier J., Mourou G. // Opt. Lett. 1995. V. 20(1). P. 73.
  3. Koopman D.W., Wilkerson T.D. // J. Appl. Phys. 1971. V. 42. P. 1883.
  4. Greig J.R., Koopman D.W., Fernsler R.F., Pechacek R.E., Vitkovitsky I.M., Ali A.W. // Phys. Rev. Lett. 1978. V. 41. P. 174.
  5. Fujiwara E., Izawa Y., Kawasaki Z., Matsuura K., Yamanaka C. // The Review of Laser Engineering. 1991. V. 19(6). P. 528–537.
  6. Miki M., Aihara Y., Shindo T. // J. Phys. D: Appl. Phys. 1993. V. 26. P. 1244–1252.
  7. Shindo T., Aihara Y., Miki M., Suzuki T. // IEEE Tran. on Power Delivery. 1993. V. 8. P. 1.
  8. Aihara Y., Shindo T., Miki M., Suzuki T. // Electrical Engineering in Japan. 1993. V. 113(4). P. 66
  9. Honda C., Takuma T., Muraoka K., Akasaki M., Kinoskita F., Katakira O. // Electrical Engineering in Japan. 1994. V. 114(7). doi: 10.1002/EEJ.4391140704
  10. Wang D., Kawasaki Z.-I., Matsuura K., Shimada Y., Uchida S., Yamanaka C., Fujiwara E., Izawa Y., Simokura N., Sonoi Y. // J. Gheophys. Res. D. 1994. V. 99. P. 16907–16912.
  11. Shimada Y., Uchida S., Yasuda H., Motokoshi S., Yamanaka C., Kawasaki Z.-I., Yamanaka T., Ishikubo Y., Adachi M. // Proc. SPIE 3423, Second GR-I International Conference on New Laser Technologies and Applications, (14 July 1998). https://doi.org/10.1117/12.316594
  12. Uchida S., Shimada Y., Yasuda H., Motokoshi S., Yamanaka C., Yamanaka T., Kawasaki Z.-I., Tsubakimoto K. // J. Opt. Technol. 1999. V. 66(3). P. 199.
  13. Bodrov S., Bukin V., Tsarev M., Murzanev A., Garnov S., Aleksandrov N., Stepanov A. // Optics Express. 2011. V. 19. P. 6829–6835.
  14. Bodrov S., Aleksandrov N., Tsarev M., Murzanev A., Kochetov I., Stepanov A. // Phys. Rev. 2013. V. 87. P. 053101.
  15. Comtois D., Chien C.Y., Desparois A., Ge´nin F., Jarry G., Johнсton T.W., Kieffer J.-C., La Fontaine B., Martin F., Mawassi R., Pépin H., Rizk F.A.M., Vidal F. // Appl. Phys. Lett., 2000. V. 76. P. 819–821.
  16. Pépin H., Comtois D., Vidal F., Chien C.Y., Desparois A., Johнсton T.W., Kieffer J.C., La Fontaine B., Martin F., Rizk F.A.M. // Phys. Plasmas 2001. V. 8. P. 2532–2539.
  17. Rodriguez M., Sauerbrey R., Wille H., Wöste L., Fujii T., André Y.-B., Mysyrowicz A., Klingbeil L., Rethmeier K., Kalkner W., Kasparian J., Salmon E., Yu J., Wolf J.-P. // Opt. Lett. 2002. V. 27. P. 772.
  18. Gordon D.F., Ting A., Hubbard R.F., Briscoe E., Manka C., Slinker S.P., Baronavski A.P., Ladouceur H.D., Grounds P.W., Girardi P.G. // Physics of Plasmas. 2003. V. 10. P. 4530.
  19. Kasparian J., Rodriguez M., Meґjean G., Yu J., Salmon E., Wille H., Bourayou R., Frey S., Andreґ Y.-B., Mysyrowicz A., Sauerbrey R., Wolf J.-P., WoЕste L. // Science. 2003. V. 301. P. 61.
  20. Ackermann R., Stelmaszczyk K., Rohwetter P., Méjean G., Salmon E., Yu J., Kaspariana J., Méchain G., Bergmann V., Schaper S., Weise B., Kumm T., Rethmeier K., Kalkner W., Wolf J. P. // Appl. Phys. Lett. 2004. V. 85. P. 23.
  21. Ackermann R., Mechain G., Mejean G., Bourayou R., Rodriguez M., Stelmaszczyk K., Kasparian J., Yu J., Salmon E., Tzortzakis S., Andre Y.-B., Bourrillon J.-F., Tamin L., Cascelli J.-P., Campo C., Davoise C., Mysyrowicz A., Sauerbrey R., Woste L., Wolf J.-P. // Appl. Phys. B. 2006. V. 82. P. 561–566.
  22. Méjean G., Ackermann R., Kasparian J., Salmon E., Yu J., and Wolf J.-P. Appl. Phys. Lett. 2006. V. 88. P. 021101.
  23. Fujii T., Miki M., Goto N., Zhidkov A., Fukuchi T., Oishi Y., Nemoto K. // Physics of Plasmas. 2008. V. 15. P. 013107.
  24. Zhang Z., Lu X., Liang W.-X., Hao Z.-Q., Zhou M.-L., Wang Z.-H., Liu X. and Zhang J. // Optics Express. 2009. V. 17. P. 3461–3468.
  25. Leonov S.B., Firsov A.A., Shurupov M.A., Michael J.B., Shneider M.N., Miles R.B., Popov N.A. // Physics of Plasmas 2012. V. 19. P. 123502.
  26. Daigle J.-F., Theberge F., Lassonde P., Kieffer J.-C., Fujii T., Fortin J., Chateauneuf M., Dubois J. // Appl. Phys. Lett. 2013. V. 103. P. 184101.
  27. Arantchouk L., Point G., Brelet Y., Prade B., Carbonnel J., Andre Y.-B., Mysyrowicz A., Houard A. // J. Appl. Phys. 2014. V. 116. P. 013303.
  28. Schmitt-Sody A., Lucero A., French Da., Latham W.P., White W., Roach W.P. // Optical Engineering 2014. V. 53. P. 051504.
  29. Théberge F., Daigle J.-F., Kieffer J.-C., Vidal F., Châteauneuf M. // Sci. Rep. 2017. V. 7. P. 40063.
  30. Produit T., Walch P., Schimmel G., Mahieu B., Herkommer C., Jung R., Metzger T., Michel K., Andre Y.-B., Mysyrowicz A., Houard A., Kasparian J., Wolf J.-P. // Optics Express. 2019. V. 27. P. 11339.
  31. Vidal F., Comtois D., Ching-Yuan Chien, Desparois A., La Fontaine B., Johнсton T.W., Kieffer J.-C., Mercure H.P., Pépin H., Rizk F.A. // IEEE Traнс. Plasma Science. 2000. V. 28. P. 418.
  32. Tzortzakis S., Prade S.B., Franco M., Mysyrowicz A. // Phys. Rev. E. 2001. V. 64. P. 57401.
  33. Cheng Y.-H., Wahlstrand J.K., Jhajj N., Milchberg H.M. // Opt. Express. 2013. V. 21. P. 4740.
  34. Lahav O., Levi L., Orr I., Nemirovsky R.A., Nemirovsky J., Kaminer I., Segev M., Cohen O. // Phys. Rev. A. 2014. V. 90. P. 021801(R).
  35. Point G., Milian C., Couairon A., Mysyrowicz A., Houard A. // J. Phys. B. 2015. V. 48. P. 094009.
  36. Богатов Н.А., Степанов А.Н. // Физика плазмы. 2023. Т. 49. С. 198.
  37. Александров Н.Л., Базелян Э.М., Богатов Н.А., Киселев М.А., Степанов А.Н. // Физика плазмы. 2008. Т. 34. С. 1142.
  38. Petrova Tz.B., Ladouceur H.D., Baronavski A.P. // Physics of Plasmas. 2008. V. 15. P. 053501.
  39. Hagelaar G.J., Pitchford L.C. // Plasma Sources Sci. Technol. 2005. V. 14. P. 722.
  40. Phelps A.V., Pitchford L.C. // Phys Rev A. 1985. V. 31. P. 2932–2949.
  41. Bragiнсkiy O.V., Vasilieva A.N., Klopovskiy K.S., Kovalev A.S., Lopaev D.V., Proshina O.V., Rakhimova T.V., Rakhimov A.T. // J. Phys. D Appl. Phys. 2005. V. 38. P. 3609.
  42. Kovalev A.S., Lopaev D.V., Mankelevich Y.A., Popov N.A., Rakhimova T.V., Poroykov A.Y., Carroll D.L. // J. Phys. D Appl. Phys. 2005. V. 38. № 14. P. 2360.
  43. Александров Н.Л., Кочетов И.В. // ТВТ. 1987. Т. 25. С. 766–771.
  44. Kossyi I.A., Kostiнсky A.Y., Matveev A.A., Silakov V.P. // Plasma Sources Sci. Technol. 1992. V. 1. P. 207–227.
  45. Popov N. A. // J. Phys. D: Appl. Phys. 2011. V. 44. P. 285201.
  46. Popov N. A. // Plasma Sources Sci. Technol. 2016. V. 25. P. 044003.
  47. Biberman L.M., Vorob’ev V.S., Yakubov I.T. Kinetics of non-equilibrium low-temperature plasmas. Plenum, New York. 1987.
  48. Da Silva C.L., Pasko V.P. // J. Geophys. Res. 2013. V. 118. P. 13561–13590.
  49. Акишев Ю.С., Демьянов А.В., Кочетов И.В., Напартович А.П., Пашкин С.В., Пономаренко В.В., Певгов В.Г., Подобедов В.Б. // ТВТ. 1982. Т. 20. С. 818–827.
  50. Florescu A.I., Mitchell J.B.A. Physics Reports. 2006. V. 430. P. 277.
  51. Benilov M.S., Naidis G.V. // J. Phys. D: Appl. Phys. 2003. V. 36. P. 1834.
  52. Herron J.T. // J. Phys. Chem. Ref. Data. 1999. V. 28(5). P. 1453.
  53. Popov N.A. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 355204.
  54. Shkurenkov I., Burnette D.D., Lempert W.R., Adamovich I.V. // Plasma Sources Sci. Technol. 2014. V. 23. P. 065003.
  55. Capitelli M., Ferreira C.M., Gordiets B.F., Osipov A.I. Plasma Kinetics in Atmospheric Gases. Berlin: Springer. 2000.
  56. Степанов А.Н., Бабин А.А., Киселев А.М., Сергеев А.М. // Квантовая электроника. 2001. Т. 31. С. 623.
  57. Демьянов А.В., Жданок С.А., Кочетов И.В., Напартович А.П., Певгов В.Г., Старостин А.Н. // ПМТФ. 1981. № 3. С. 5–10.
  58. Petrova Tz.B., Ladouceur H.D., Baronavski A.P. // Phys. Rev. 2007. V. 76. P. 066405.
  59. Базелян Э.М., Райзер Ю.П. Искровой разряд. М.: МФТИ, 1997.
  60. Guo B., Li X., Ebert U., Teunissen J. // Plasma Sources Sci. Technol. 2022. V. 31. P. 095011.
  61. Laux C.O., Spence T.G., Kruger C.H., Zare R.N. // Plasma Sources Sci. Technol. 2003. V. 12.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies