Zakharov–Kuznetsov Equation for Describing Low-Frequency Nonlinear Dust Acoustic Perturbations in Saturn’s Dusty Magnetosphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A description is given of low-frequency nonlinear dust acoustic waves in Saturn’s dusty magnetosphere, which contains electrons of two types (hot and cold) obeying the kappa distribution, magnetospheric ions, and charged dust particles. For the corresponding conditions, the derivation of the Zakharov–Kuznetsov equation is given, which describes the nonlinear dynamics of dust acoustic waves in the case of low frequencies and a pancake-shaped wave packet along an external magnetic field. It is shown that under the conditions of Saturn’s magnetosphere there exist solutions of the Zakharov–Kuznetsov equation in the form of one-dimensional and three-dimensional solitons. Possible observations of the considered solitons in future space missions are discussed.

About the authors

S. I. Kopnin

Space Research Institute, Russian Academy of Sciences

Email: popel@iki.rssi.ru
Russian Federation, Moscow

D. V. Shokhrin

Higher School of Economics

Email: popel@iki.rssi.ru
Russian Federation, Moscow

S. I. Popel

Space Research Institute, Russian Academy of Sciences

Author for correspondence.
Email: popel@iki.rssi.ru
Russian Federation, Moscow

References

  1. Попель С.И. // Природа. 2015. № 9. С. 48.
  2. Wahlund J.-E., André M., Eriksson A.I.E., Lundberg M., Morooka M.W., Shafiq M., Averkamp T.F., Gurnett D.A., Hospodarsky G.B., Kurth W.S., Jacobsen K.S., Pedersen A., Farrell W., Ratynskaia S., Piskunov N. // Planetary Space Sci. 2009. V. 57. P. 1795.
  3. Yaroshenko V.V., Ratynskaia S., Olson J., Brenning N., Wahlund J.-E., Morooka M., Kurth W.S., Gurnett D.A., Morfill G.E. // Planetary Space Sci. 2009. V. 57. P. 1807.
  4. Sittler Jr. E.C., Ogilvie K.W., Scudde J.D. // J. Geophys. Res. 1983. V. 88. P. 8847.
  5. Barbosa D.D., Kurth W.S. // J. Geophys. Res. 1993. V. 98. P. 9351.
  6. Koen E.J., Collier A.B., Maharaj S.K., Hellberg M.A. // Phys. Plasmas. 2014. V. 21. P. 072122.
  7. Popel S.I., Zelenyi L.M., Golub’ A.P., Dubinskii A.Yu. // Planetary Space Sci. 2018. V. 156. P. 71.
  8. Голубь А.П., Попель С.И. // Письма ЖЭТФ. 2021.Т. 113. С. 440.
  9. Schippers P., Blanc M., Andre N., Dandouras I., Lewis G.R., Gilbert L.K., Persoon A.M., Krupp N., Gurnett D.A., Coates A.J., Krimigis S.M., Young D.T., Dougherty M.K. // J. Geophys. Res. 2008. V. 113. P. A07208.
  10. Yeager A. // Nature. 2008. doi: 10.1038/news.2008.1254.
  11. Pécseli H.L., Lybekk B., Trulsen J., Eriksson A. // Plasma Phys. Controlled Fusion. 1997. V. 39. P. A227.
  12. Попель С.И. // Физика плазмы. 2001. Т. 27. С. 475.
  13. Копнин С.И., Косарев И.Н., Попель С.И. // Физика плазмы. 2005. Т. 31. С. 224.
  14. Копнин С.И., Шохрин Д.В., Попель С.И. // Физика плазмы. 2022. Т. 48. С. 163.
  15. Копнин С.И., Шохрин Д.В., Попель С.И. // Физика плазмы. 2023. Т. 49. С. 582.
  16. Петвиашвили В.И., Похотелов О.А. Уединенные волны в плазме и атмосфере. М.: Энергоатомиздат, 1989.
  17. Banerjee G., Maitra S. // Phys. Plasmas. 2015. V. 22. P. 043708.
  18. Popel S.I., Kopnin S.I., Kosarev I.N., Yu M.Y. // Adv. Space Res. 2006. V. 37. P. 414.
  19. Rubab N., Murtaza G. // Physica Scripta. 2006. V. 73. P. 178.
  20. Зейтунян Р.Х. // УФН. 1995. Т. 165. С. 1403.
  21. Рыскин Н.М., Трубецков Д.И. Нелинейные волны. М.: URSS, 2021. С. 180.
  22. Кассем А.И., Копнин С.И., Попель С.И., Зеленый Л.М. // Физика плазмы. 2022. T. 48. P. 871.
  23. Sulaiman A.H., Kurth W.S., Hospodarsky G.B., Averkamp T.F., Ye S.-Y., Menietti J.D., Farrell W.M., Gurnett D.A., Persoon A.M., Dougherty M.K., Hunt G.J. // Geophys. Res. Lett. 2018. V. 45. P. 7347.
  24. Kopnin S.I., Kosarev I.N., Popel S.I., Yu M.Y. // Planetary Space Sci. 2004. V. 52. P. 1187.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies