Quasi-Classical Approximation of the Data on the Ionization Potentials of Multiply Charged Ions of the Superheavy Elements

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The semiempirical quasi-classical method of approximation of the ionization potentials used earlier for multiply charged ions of the elements with medium and high atomic number Z is applied to ions of elements with atomic numbers in the range of 85*z*110 and number of electrons in the range of 1*Ne*78. The discovered simple trends allow using a relatively accurate (to within 1–2%), based on two small tables, polynomial approximation of the available and lacking data on the ionization potentials in the NIST tables for all multiply charged ions in the atomic-number range under consideration. An improvement in the applicability conditions of the quasi-classical approximation with increase in the atomic number is demonstrated

About the authors

G. V. Shpatakovskaya

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Author for correspondence.
Email: shpagalya@yandex.ru
125047, Moscow, Russia

References

  1. Borschevsky A., Eliav E., Vilkas M.J., Ishikawa Y., Kaldor U. // Phys. Rev. A. 2007. V. 75. P. 042514.
  2. Dzuba V.A., Safronova M.S., Safronova U.I. // Phys. Rev. A: At. Mol. Opt. Phys. 2014. V. 90. P. 012504.
  3. Dzuba V.A. // Phys. Rev. A. 2016. V. 93. P. 032519.
  4. Porsev S.G., Safronova M.S., Safronova U.I., Dzuba V.A., Flambaum V.V. // Phys. Rev. A. 2018. V. 98. P. 052512.
  5. Dzuba V.A., Safronova M.S., Safronova U.I. // Phys. Rev. A. 2016. V. 94. P. 042503.
  6. Safronova U.I., Rudzikas Z.B. // J. Phys. B: Atom. Molec. Phys. 1976. V. 9. P. 1989.
  7. Carlson T. A., Nestor C.W., Jr., Wasserman N., McDowell J.D. // Klculated ionization potentials for multiply charged ions. At. Data Nucl. Data Tables. 1970. V. 2. P. 63.
  8. Drake G.W.F. // Canadian J. Phys. 1988. V. 66. P. 586.
  9. Rodrigues G.C., Indelicato P., Santos J.P., Patte P., Parente F. // At. Data Nucl. Data Tables. 2004. V. 86. P. 117.
  10. Artemyev A.N., Shabaev V.M., Yerokhin V.A., Plunien G., Soff G. // Phys. Rev. A. 2005. V. 71. P. 062104.
  11. Sapirstein J., Cheng K.T. // Phys. Rev. A. 2011. V. 83. P. 012504.
  12. Rashid K., Saadi M.Z., Yasin M. // At. Data Nucl. Data Tables. 1988. V. 40. P. 365.
  13. Kramida A.E., Reader J. // At. Data Nucl. Data Tables. 2006. V. 92. P. 457.
  14. Kramida A., Ralchenko Yu., Reader J. and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.10), 2020 [Online]. Available: https://physics.nist.gov/asd [2023, July 12].
  15. Biémont E., Frémat Y., Quinet P. // Atomic Data and Nuclear Data Tables. 1999. V. 71. P. 117.
  16. Gil G., Gonzalez A. // Can. J. Phys. 2017. V. 95. P. 479.
  17. Huang J., Jiang G., Zhao Q. // Chin. Phys. Lett. 2006. V. 23. P. 69.
  18. Шпатаковская Г.В. // Письма ЖЭТФ. 2021. Т. 114. С. 798.
  19. Шпатаковская Г.В. // ЖЭТФ. 2022. Т. 162. С. 205.
  20. Шпатаковская Г.В. // УФН. 2019. Т. 189. С. 195.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (182KB)
3.

Download (162KB)

Copyright (c) 2023 Г.В. Шпатаковская

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies