Physical Properties of a Low-Power Helicon Source Operating on a High-Frequency Discharge with a Capacitive Component

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of an experimental study of a low-power RF plasma source placed in a longitudinal magnetic field (helicon thruster), when it operates on a capacitive RF discharge and inductive RF discharges with a capacitive component, are presented. A significant dependence of the characteristics of the ion and electron fluxes of the source on the induction of a constant magnetic field is shown. The fundamental applicability of capacitive RF discharge as a working process in the studied plasma source is demonstrated. It is shown that the increase in the average energy of ions in the flow at the outlet of the source with the appearance of the capacitive component of the discharge is slight.

About the authors

I. I. Zadiriev

Moscow State University

Email: iizadiriev@yandex.ru
119991, Moscow, Russia

K. V. Vavilin

Moscow State University

Email: iizadiriev@yandex.ru
119991, Moscow, Russia

E. A. Kral’kina

Moscow State University

Email: iizadiriev@yandex.ru
119991, Moscow, Russia

A. M. Nikonov

Moscow State University

Email: iizadiriev@yandex.ru
119991, Moscow, Russia

G. V. Shvydkii

Moscow State University

Author for correspondence.
Email: iizadiriev@yandex.ru
119991, Moscow, Russia

References

  1. Manente M., Walker M., Carlsson J., Bramanti C., Rocca S., Curreli D., Guclu Y., Pavarin D. // Proc. 5th International Spacecraft Propulsion Conf., Crete, Greece 2008. https://www.esa.int/gsp/ACT/doc/PRO/ACT-RPR-PRO-2008-ISPC-Feasibility-study-low-power-helicon-thruster.pdf
  2. Boswell R.W., Chen F.F. // IEEE Transactions on Plasma Science. 1997. V. 25. I. 6. P. 1229. https://doi.org/10.1109/27.650898
  3. Chen F.F., Boswell R.W. // IEEE Transactions on Plasma Science. 1997. V. 25. I. 6. P. 1245. https://doi.org/10.1109/27.650899
  4. Charles C. // J. Phys. D: Appl. Phys. 2009. V. 42. № 16. 163001. https://doi.org/10.1088/0022-3727/42/16/163001
  5. Charles C. // Plasma Sources Sci. Technol. 2007. V. 16. № 4. R1. https://doi.org/10.1088/0963-0252/16/4/R01
  6. Takahashi K. // Scientific Reports. 2021. V. 11. 2768. https://doi.org/10.1038/s41598-021-82471-2
  7. Takahashi K. // Reviews of Modern Plasma Physics. 2019. V. 3. 3. https://doi.org/10.1007/s41614-019-0024-2
  8. Charles C., Boswell R.W., Lieberman M.A. // Appl. Phys. Lett. 2006. V. 89. 261503. https://doi.org/10.1063/1.2426881
  9. Charles C., Cox W., Boswell R.W., Lainé R., Perren M. // Plasma Sources Sci. Technol. 2010. V. 19. 045003.
  10. Corr C.S., Zanger J., Boswell R.W. // Appl. Phys. Lett. 2007. V. 91. 241501. https://doi.org/10.1063/1.2823575
  11. Harle T., Pottinger S.J., Lappas V.J. // Plasma Sources Sci. Technol. 2013. V. 22. 015015. https://doi.org/10.1088/0963-0252/22/1/015015
  12. Charles C., Boswell R.W. // Phys. Plasmas. 2004. V. 11. P. 1706. https://doi.org/10.1063/1.1652058
  13. Corr C.S., Boswell R.W., Charles C., Zanger J. // Appl. Phys. Lett. 2008. V. 92. 221508. https://doi.org/10.1063/1.2938720
  14. Charles C., Boswell R.W. // Appl. Phys. Lett. 2003. V. 82. P. 1356. https://doi.org/10.1063/1.1557319
  15. Charles C., Boswell R.W. // Appl. Phys. Lett. 2007. V. 91. 201505. https://doi.org/10.1063/1.2814877
  16. Takahashi K., Charles C., Boswell R., Ando A. // Plasma Sources Sci. Technol. 2014. V. 23. 044004. https://doi.org/10.1088/0963-0252/23/4/044004
  17. Райзер Ю.П., Шнейдер М.Н., Яценко Н.А. Высокочастотный емкостный разряд: Физика. Техника эксперимента. Приложения. М.: изд. МФТИ: Наука, Физматлит, 1995.
  18. Задириев И.И., Вавилин К.В., Кралькина Е.А., Никонов А.М., Швыдкий Г.В. // Физика плазмы. 2022. Т. 48. № 9. С. 823–835. https://doi.org/10.31857/S0367292122600388
  19. Kralkina E.A., Rukhadze A.A., Nekliudova P.A., Pav-lov V.B., Petrov A.K., Vavilin K.V. // AIP Advances. 2018. V. 8. 035217. https://doi.org/10.1063/1.5023631
  20. Shamrai K.P., Taranov V.B. // Plasma Source Science and Technology. 1996. V. 5. P. 475–490. https://doi.org/10.1088/0963-0252/5/3/015
  21. Chen F.F. // Phys. Plasmas. 1996. V. 3. P. 1783. https://doi.org/10.1063/1.871697
  22. Blackwell D.D., Madziwa T.G., Arnushv, Chen F.F. // Physical Review Letters. 2002. V. 88. 145002. https://doi.org/10.1103/PhysRevLett.88.145002
  23. Chen F.F., Jiang X., Evans J.D., Tynan G., Arnush D. // Plasma. Phys. Control. Fusion. 1997. V. 39. A411. https://doi.org/10.1088/0741-3335/39/5A/038
  24. Arnush D. // Phys. Plasmas. 2000. V. 7. 3042. https://doi.org/10.1063/1.874157
  25. Chen F.F. // Phys. Plasmas. 2003. V. 10. 2586. https://doi.org/ 10.1063/1.1575755.
  26. Chen F.F. Helicon Plasma Sources / Ed. by O.A. Popov. High Density Plasma Sources. N.Y.: Noyes publications, 1996. P. 1–75.
  27. Chen F.F. // Plasma Sources Sci. Technol. 2015. V. 24. 014001. https://doi.org/10.1088/0963-0252/24/1/014001
  28. Shinohara Sh. // Advances in Physics: X. 2018. V. 3. 1420424. https://doi.org/10.1080/23746149.2017.1420424
  29. Isayama S., Hada T., Shinohara Sh. // Plasma and Fusion Research. 2018. V. 13. 1101014. https://doi.org/10.1585/pfr.13.1101014
  30. Boswell R.W. // Physics Letters A. 1970. V. 33. P. 457–458. https://doi.org/10.1016/0375-9601(70)90606-7
  31. Chen F.F., Chevalier Gs. // Journal of Vacuum Science and Technology A. 1992. V. 10. P. 1389. https://doi.org/10.1116/1.578256

Supplementary files


Copyright (c) 2023 И.И. Задириев, К.В. Вавилин, Е.А. Кралькина, А.М. Никонов, Г.В. Швыдкий

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies