The Study of Surface Sliding Discharge Interacting with an Oblique Shock Wave

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A distributed surface sliding discharge with a duration of 500 ns in supersonic air flows with an oblique shock wave had been experimentally studied. The Mach numbers of the flows were 1.18–1.68, the density was 0.02–0.45 kg/m3. The discharge was initiated in a single pulse mode. With a voltage of 25 kV, the discharge current was about 1 kA. It is shown that the discharge current, as well as the spatio-temporal characteristics of the radiation depend on the parameters of the local rarefaction zone in the boundary layer. In a stationary flow with an oblique shock wave, the discharge is generated as a single channel. Analysis of high-speed shadowgraphy of the flow after discharge showed that a single discharge channel generates a semi-cylindrical shock wave. The purpose of the work was to study the motion of the shock wave generated from the discharge under different conditions of supersonic flow. Comparison of the experimental dynamic of the shock wave with the results of numerical modelling of the flow based on the non-stationary Navier–Stokes equations showed that the value of the thermal energy released in the discharge channel is 0.15–0.36 J.

About the authors

I. V. Mursenkova

Faculty of Physics, Moscow State University

Email: murs_i@physics.msu.ru
119991, Moscow, Russia

I. E. Ivanov

Faculty of Physics, Moscow State University

Email: ivanovmai@gmail.com
119991, Moscow, Russia

Yu. Liao

Faculty of Physics, Moscow State University

Email: 565164346@qq.com
119991, Moscow, Russia

A. F. Ziganshin

Faculty of Physics, Moscow State University

Author for correspondence.
Email: ziganshin.af19@physics.msu.ru
119991, Moscow, Russia

References

  1. Leonov S.B., Adamovich I.V., Soloviev V.R. // Plasma Sources Sci. Technol. 2016. V. 25. 063001. https://doi.org/10.1088/0963-0252/25/6/063001
  2. Mursenkova I.V., Znamenskaya I.A., Lutsky A.E. // J. Phys. D.: Appl. Phys. 2018. V. 51. № 10.https://doi.org/10. 105201. 10.1088/1361-6463/aaa838
  3. Стариковский А.Ю., Александров Н.Л. // Физика плазмы. 2021. Т. 47. № 2. С. 126.
  4. Webb N., Clifford C., Samimy M. // Exp. Fluids. 2013. V. 54. 1545. https://doi.org/10.1007/s00348-013-1545-z
  5. Benard N., Moreau E. // Exp. Fluids. 2014. V. 55. 1846. https://doi.org/10.1007/s00348-014-1846-x
  6. Mursenkova I.V., Ivanov I.E., Liao Yu., Kryukov I.A. // Energies. 2022. V. 15. № 6. 2189. https://doi.org/10.3390/en15062189
  7. Mursenkova I.V., Kuznetsov A.Yu., Sazonov A.S. // Appl. Phys. Lett. 2019. V. 115. № 11. 114102. https://doi.org/10.1063/1.5116810
  8. Mursenkova I.V., Ivanov I.E., Ulanov P., Liao Yu., Sazonov A.S. // Journal of Physics: Conf. Ser. 2020. V. 1698. 012001. https://doi.org/10.1088/1742-6596/1698/1/012001
  9. Moreau E., Bayoda D., Benard N. // J. Appl. Phys. 2021. V. 54. 075207. https://doi.org/10.1088/1361-6463/abc44b
  10. Atanasov P.A., Vasilev S.G., Kovalyov I.O., Kuz’min G.P., Nesterenko A.A. // J. Phys. D: Appl. Phys. 1988. V. 21. P. 1750. https://doi.org/10.1088/0022-3727/21/12/014
  11. Борисов В.М., Демин А.И., Ельцов А.В., Нови-ков В.П., Христофоров О.Б. // Квантовая электроника. 1999. Т. 26. № 3. С. 204.
  12. Знаменская И.А., Латфуллин Д.Ф., Луцкий А.Е., Мурсенкова И.В., Сысоев Н.Н. // ЖТФ. 2007. Т. 77. № 5. С. 10.
  13. Liao Yu., Mursenkova I.V., Ivanov I.E., Znamen-skaya I.A., Sysoev N.N. // Physics of Fluids. 2020. V. 32. № 10. https://doi.org/10. 106108. 10.1063/5.0025319
  14. Знаменская И.А., Латфуллин Д.Ф., Луцкий А.Е., Мурсенкова И.В. // Письма в ЖТФ. 2010. Т. 36. № 17. С. 35.
  15. Глушко Г.С., Иванов И.Э., Крюков И.А. // Матем. моделирование. 2009. Т. 21. № 12. С. 103.
  16. Архипов Н.О., Знаменская И.А., Мурсенкова И.В., Остапенко И.Ю., Сысоев Н.Н. // Вестник Моск. ун-та. Сер. 3: Физ. астрон. 2014. Т. 1. С. 88.
  17. Brunet H., Vincent P. // J. Appl. Phys. 1979. V. 50. № 7. P. 4708. https://doi.org/10.1063/1.326527
  18. Райзер Ю.П. Физика газового разряда. М.: Наука, 1992.
  19. Попов Н.А. // Физика плазмы. 2011. Т. 37. № 9. С. 863.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (280KB)
3.

Download (290KB)
4.

Download (492KB)
5.

Download (41KB)
6.

Download (1MB)
7.

Download (487KB)

Copyright (c) 2023 И.В. Мурсенкова, И.Э. Иванов, Ю. Ляо, А.Ф. Зиганшин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies