Streamers Initiated by a Capacitive Discharge at Air Pressure 0.2–6 Torr

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents a study of diffuse plasma jets (DPJs), which have a red color and consist of streamers (ionization waves). It has been found that plasma generated in air at pressures of 0.2–4 Torr by a repetitively pulsed capacitive discharge in a dielectric tube initiates two DPJs in one pulse, each with up to three streamers. It has been found that two streamers propagating from the circular electrodes in opposite directions are formed by one voltage pulse of positive polarity. Using an ICCD camera and a silicon PMT, it is shown that the arrival of the front edge of a positive streamer in the region finally reached by the front edge of a negative streamer that was generated first at the front edge of the negative voltage pulse leads to the formation of a third thin streamer in the form of a cone with a small apex angle. It has been found that the direction of motion of the third streamer coincides with the direction of the streamers initiating it, but its speed is two orders of magnitude lower. It is shown that, at low air pressures, the speed of the first positive streamers is higher than that of the negative streamers and the distance to which they propagate at a generator voltage of 7 kV and an air pressure of 0.2 Torr exceeds 1 m.

About the authors

V. F. Tarasenko

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia

E. Kh. Baksht

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia

V. A. Panarin

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia

N. P. Vinogradov

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia

References

  1. Füllekrug M., Mareev E.A., Rycroft M.J. (Eds.). Sprites, elves and intense lightning discharges. V. 225. Springer Science & Business Media, 2006.
  2. Jehl A., Farges T., and Blanc E. // J. Geophys. Res. Space Physics. 2013. V. 118. P. 454. https://doi.org/10.1029/2012JA018144
  3. Garipov G.K., Khrenov B.A., Klimov P.A., Klimenko V.V., Mareev E.A., Martines O., Mendoza E., Morozenko V.S., Panasyuk M.I., Park I.H., Ponce E., Rivera L., Sala-zar H., Tulupov V.I., Vedenkin N.N., Yashin I.V. // J. of Geophysical Research: Atmospheres. 2013. V. 118. № 2. P. 370. https://doi.org/10.1029/2012JD017501
  4. Huang A., Lu G., Yue J., Lyons W., Lucena F., Lyu F., Cummer S.A., Zhang W., Xu L., Xue X., Xu S. // Geophys. Res. Lett. 2018. V. 45. P. 13. doi.org/https://doi.org/10.1029/2018GL079576
  5. McHarg M.G., Stenbaek-Nielsen H.C., Kammae T. // Geophys. Res. Lett. 2007. V. 34. P. L06804. https://doi.org/10.1029/2006GL027854
  6. Ebert U., Nijdam S., Li C., Luque A., Briels T., van Veldhuizen E. // JGR: Space Physics. 2010. V. 115. № A7. A00E43. https://doi.org/10.1029/2009JA014867
  7. Pasko Victor P., Jianqi Qin, and Celestin Sebastien // Surveys in Geophysics. 2013. V. 34. P. 797. https://doi.org/10.1007/s10712-013-9246-y
  8. Vasilyak L.M., Kostyuchenko S.V., Kudryavtsev N.N., Filyugin I.V. // Phys. Usp. 1994. V. 37. № 3. P. 247. https://doi.org/10.1070/PU1994v037n03ABEH000011
  9. Anikin N.B., Zavialova N.A., Starikovskaia S.M., Starikovskii A.Y. // IEEE Transactions on Plasma Science. 2008. V. 36. P. 902. https://doi.org/10.1109/TPS.2008.924504
  10. Huang B., Zhang C., Qiu J., Zhang X., Ding Y., Shao T. // Plasma Sourc. Sci. and Technnol. 2019. V. 28. № 9. P. 095001.
  11. Goto Y., Ohba Y., Narita K., Goto Y., Ohba Y., Narita K. // Journal of Atmospheric Electricity. 2007. V. 27. Iss. 2. P. 105.
  12. Tarasenko V., Vinogradov N., Baksht E., and Sorokin D. // Journal of Atmospheric Science Research. 2022. V. 5. Iss. 3. P. 26. https://doi.org/10.30564/jasr.v5i3.4858
  13. Тарасенко В.Ф., Бакшт Е.Х., Виноградов Н.П. // Прикладная физика. 2022. № 4. С. 11. https://doi.org/10.51368/1996-0948-2022-4-11-17
  14. Бакшт Е.Х., Виноградов Н.П., Тарасенко В.Ф. // Оптика атмосферы и океана. 2022. Т. 35. № 9. С. 777. https://doi.org/10.15372/AOO20220911
  15. Sorokin D., Tarasenko V., Baksht E.Kh., Vinogradov N.P. // European Journal of Environment and Earth Sciences. 2022. V. 3. Iss. 6. P. 42. https://doi.org/10.24018/ejgeo.2022.3.6.322
  16. Райзер Ю.П. Физика газового разряда. Долгопрудный: Интеллект, 2009, 736 с.
  17. Starikovskiy A.Yu, Aleksandrov N.L., Shneider M.N. // Journal of Applied Physics. 2021. V. 129. № 6. P. 063301. https://doi.org/10.1063/5.0037669
  18. Wu S., Cheng W., Huang G., Wu F., Liu C., Liu X., Zhang C., Lu X. // Physics of Plasmas. 2018 V. 25. № 12. P. 123507. https://doi.org/10.1063/1.5042669
  19. Tarasenko V.F., Kuznetsov V.S., Panarin V.A., Skakun V.S., Sosnin E.A., Baksht E.K. // JETP Letters. 2019. V. 110. P. 85. https://doi.org/10.1063/1.4981385
  20. Tarasenko V., Baksht E., Kuznetsov V., Panarin V., Skakun V., Sosnin E., Beloplotov D. // Journal of Atmospheric Science Research. 2020. V. 3. Iss. 4. P. 28. https://ojs.bilpublishing.com/index.php/jasr
  21. Tarasenko V.F., Sosnin E.A., Skakun V.S., Panarin V.A., Trigub M.V., Evtushenko G.S. // Physics of Plasmas. 2017. V. 24. № 4. P. 043514.
  22. Sosnin E.A., Babaeva N.Yu., Kozyrev A.V., Kozhevni-kov V.Yu., Naidis G.V., Skakun V.S., Panarin V.A., Tarasenko V.F. // Phys. Usp. 2021. V. 64. Is. 2. P. 191. https://doi.org/10.3367/UFNe.2020.03.038735
  23. Panarin V.A., Skakun V.S., Baksht E.K., Sosnin E.A., Kuznetsov V.S., Sorokin D.A. // Plasma Physics Reports. 2022. V. 48. № 7. P. 812.
  24. Hoder T., Bonaventura Z., Prukner V., Gordillo-Váz-quez F.J., Šimek M. // Plasma Sources Science and Technology. 2020. V. 29. № 3. P. 03LT01. https://doi.org/10.1088/1361-6595/ab7087
  25. Stenbaek-Nielsen H.C., McHarg M.G., Kanmae T., and Sentman D.D. // Geophys. Res. Lett. 2007. V. 34. № 11. P. L11105. https://doi.org/10.1029/2007GL029881
  26. Stenbaek-Nielsen H.C., Kanmae T., McHarg M.G., Haaland R. // Surveys in Geophysics. 2013. V. 34. P. 769.
  27. Zabotin N.A., Wright J.W. // Geophys. Res. Lett. 2001. V. 28. № 13. P. 2593.
  28. Janalizadeh R., Pasko V.P. // Electron Impact Ionization of Metallic Species at Sprite Altitudes as a Mechanism of Initiation of Sprite Streamers. AGU Fall Meeting. 2018.
  29. Tarasenko V., Vinogradov N., Beloplotov D., Burachenko A., Lomaev M., Sorokin D. // Nanomaterials. 2022. V. 12. № 4. P. 652. https://doi.org/10.3390/nano12040652
  30. Hervig M., Thompson R.E., McHugh M., Gordley L.L., Russell III J.M., Summers M.E. // Geophys. Res. Lett. 2001. V. 28 № 6. P. 971. https://doi.org/10.1029/2000GL012104
  31. Базелян Э.М., Райзер Ю.П. Физика молнии и молниезащиты. М.: Физматлит, 2001, 320 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (31KB)
3.

Download (282KB)
4.

Download (78KB)
5.

Download (721KB)
6.

Download (1MB)
7.

Download (57KB)
8.

Download (69KB)
9.

Download (731KB)
10.

Download (29KB)
11.

Download (719KB)

Copyright (c) 2023 В.Ф. Тарасенко, Е.Х. Бакшт, В.А. Панарин, Н.П. Виноградов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies