Gas-Dynamic Multiple-Mirror Trap GDMT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work is devoted to the project of a new-generation open trap, gas-dynamic multiple-mirror trap (GDMT), proposed at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. The aim of the project is to substantiate the possibility of using open traps as thermonuclear systems: a source of neutrons and, in the future, a thermonuclear reactor. The main objectives of the project are to develop technologies for long-term plasma maintenance in an open trap, optimize neutron source parameters based on the gas-dynamic trap, and demonstrate methods for improving plasma confinement. The magnetic vacuum system of the facility consists of a central trap, multiple-mirror sections that improve the longitudinal plasma confinement, and expanders designed to accommodate plasma flux absorbers. The facility is to be built in several stages. The starting configuration is broadly similar to the GDT facility and includes a central trap with strong magnetic mirrors and expanders. It solves two main problems: optimization of the parameters of the neutron source based on the gas-dynamic trap and study of the physics of the transition to the configuration of a diamagnetic trap with a high relative pressure β ≈ 1, which significantly increases the efficiency of the system. This work describes the technical design of the starting configuration of the facility and outlines the physical principles on which the GDMT project is based.

About the authors

D. I. Skovorodin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Email: D.I.Skovorodin@inp.nsk.su
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

I. S. Chernoshtanov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

V. Kh. Amirov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia

V. T. Astrelin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

P. A. Bagryanskii

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia

A. D. Beklemishev

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

A. V. Burdakov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

A. I. Gorbovskii

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia

I. A. Kotel’nikov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia

E. M. Magommedov

SuperOx

Email: I.S.Chernoshtanov@inp.nsk.su
117246, Moscow, Russia

S. V. Polosatkin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University; Novosibirsk State University

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia; 630090, Novosibirsk, Russia

V. V. Postupaev

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

V. V. Prikhod’ko

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

V. Ya. Savkin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia

E. I. Soldatkina

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

A. L. Solomakhin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia

A. V. Sorokin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk

A. V. Sudnikov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

M. S. Khristo

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Technical University

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia; 630073, Novosibirsk, Russia

S. V. Shiyankov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: I.S.Chernoshtanov@inp.nsk.su
630090, Novosibirsk, Russia

D. V. Yakovlev

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: I.S.Chernoshtanov@inp.nsk.su
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

V. I. Shcherbakov

SuperOx

Author for correspondence.
Email: I.S.Chernoshtanov@inp.nsk.su
117246, Moscow, Russia

References

  1. Будкер Г.И. Физика плазмы и проблема управляемых термоядерных реакций / Под ред. М.А. Леонтовича. М.: Изд-во АН СССР, 1958. Т. III. С. 1.
  2. Post R.F. // Proc. 2nd United Nations Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva, 1-13 September 1958 V. 32 (Geneva: United Nations, 1958), p. 245.
  3. Рютов Д.Д. // УФН. 1988. Т. 154. С. 565. https://doi.org/10.1070/PU1988v031n04ABEH005747
  4. Post R.F. // Nuclear. Fusion. 1987. V. 27. № 10. P. 1579, https://doi.org/10.1088/0029-5515/27/10/001
  5. Головин И.Н., Кадомцев Б.Б. // Атомная энергия. 1996. Т. 81. № 5. С. 364.
  6. Beklemishev A., Anikeev A., Astrelin V., Bagryansky P., Burdakov A., Davydenko V., Gavrilenko D., Ivanov A., Ivanov I., Ivantsivsky M., Kandaurov I., Polosatkin S., Postupaev V., Sinitsky S., Shoshin A., Timofeev I., Tsidulko Yu. // Fusion Science and Technologies. 2013. V. 63. № 1T. P. 46. https://doi.org/10.13182/FST13-A16872
  7. Beklemishev A., Anikeev A., Burdakov A., Ivanov A., Ivanov I., Postupaev V., Sinitsky S. // AIP Conf. Proc. 2012. V. 1442. P. 147.https://doi.org/10.1063/1.4706862
  8. Bagryansky P.A., Beklemishev A.D., Postupaev V.V. // Journal of Fusion Energy. 2019, V. 38. № 1. P. 162. https://doi.org/10.1007/s10894-018-0174-1
  9. Beklemishev A.D. // Physics of Plasmas. 2016. V. 23. № 8. P. 082506, https://doi.org/10.1063/1.4960129
  10. Beklemishev A.D. // AIP Conf. Proc. 2016. V. 1771, p. 030001.https://doi.org/10.1063/1.4964157
  11. Будкер Г.И., Мирнов В.В., Рютов Д.Д. // Письма в ЖЭТФ. 1971. Т. 14. № 5. С. 320.
  12. Logan B.G., Lichtenberg A.J., Lieberman M.A., and Makhijani A. // Phys. Rev. Lett. 1972. V. 28. № 144. https://doi.org/10.1103/PhysRevLett.28.144
  13. Beklemishev A.D. // AIP Conf. Proc. 2016. V. 1771. P. 040006. https://doi.org/10.1063/1.4964191
  14. Sudnikov A.V., Beklemishev A.D., Inzhevatkina A.A., Ivanov I.A., Postupaev V.V., Burdakov A.V., Glinskiy V.V., Kuklin K.N., Rovenskikh A.F., Ustyuzhanin V.O. // Journal of plasma physics. 2020. V. 86. N. 5. P. 905860515. https://doi.org/10.1017/S0022377820001245
  15. Kotelnikov I.A., Mirnov V.V., Nagornyj V.P., Ryutov D.D. // Proc. X Int. Conf. Plasma Phys. and Controlled Nuclear Fusion Research, Vienna: IAEA. 1985. V. 2. P. 309.
  16. Ivanov A.A., Kruglyakov E.P., Tsidulko Yu.A., Krasnoperov V.G., Korshakov V.V. // Proc. of 16th IEEE/NPSS Symposium Fusion Engineering, 30 Sept. 5 Oct., 1995: Proc.: in 2 pt. Danvers: Clearence center, 1995. Pt. 1. P. 66.
  17. Bagryansky P.A., Ivanov A.A., Kruglyakov E.P., Kudryavtsev A.M., Tsidulko Yu.A., Andriyash A.V., Lu-kin A.L., Zouev Yu.N. // Fusion Engineering and Design. 2004. V. 70. № 1. P. 13. https://doi.org/10.1016/j.fusengdes.2003.08.002
  18. Bagryansky P.A., Chen Z., Kotelnikov I.A., Yakovlev D.V., Prikhodko V.V., Zeng Q., Bai Y., Yu J., Ivanov A.A. and Wu Y. // Nucl. Fusion. 2020. V. 60. № 3. P. 036005. https://doi.org/10.1088/1741-4326/ab668d
  19. Юров Д.В., Приходько В.В. // УФН. 2014. Т. 184. № 11. С. 1237. https://doi.org/10.3367/UFNr.0184.201411f.1237
  20. Kuteev B.V., Goncharov P.R. // Fusion Science and Technology. 2020. V. 76. № 7. P. 836. https://doi.org/10.1080/15361055.2020.1817701
  21. Bagryansky P.A., Gospodchikov E.D., Ivanov A.A., Lizunov A.A., Kolesnikov E.Yu., Konshin Z.E., Korobeynikova O.A., Kovalenko Y.V., Maximov V.V., Murakhtin S.V., Pinzhenin E.I., Prikhodko V.V., Savkin V.Ya., Shalashov A.G., Skovorodin D.I., Soldatkina E.I., Solomakhin A.L. and Yakovlev D.V. // Plasma and Fusion Research. 2019. V. 14. № 1. P. 2402030. https://doi.org/10.1585/pfr.14.2402030
  22. Bagryansky P.A., Anikeev A.V., Beklemishev A.D., Do-nin A.S., Ivanov A.A., Korzhavina M.S., Kovalenko Yu.V., Kruglyakov E.P., Lizunov A.A., Maximov V.V., Murakhtin S.V., Prikhodko V.V., Pinzhenin E.I., Pushkareva A.N., Savkin V.Ya., Zaytsev K.V. // Transactions of Fusion Science and Technology. 2011. V. 59. № 1T. P. 31. https://doi.org/10.13182/FST11-A11568
  23. Bagryansky P.A., Shalashov A.G., Gospodchikov E.D., Lizunov A.A., Maximov V.V., Prikhodko V.V., Soldatki-na E.I., Solomakhin A.L., Yakovlev D.V. // Phys. Rev. Lett. 2015. V. 114. P. 205001. https://doi.org/10.1103/PhysRevLett.114.205001
  24. Bagryansky P.A., Anikeev A.V., Denisov G.G., Gospodchikov E.D., Ivanov A.A., Lizunov A.A., Kovalenko Yu.V., Malygin V.I., Maximov V.V., Korobeinikova O.A., Murakhtin S.V., Pinzhenin E.I., Prikhodko V.V., Savkin V.Ya., Shalashov A.G., Smolyakova O.B., Soldatkina E.I., Solomakhin A.L., Yakovlev D.V., Zaytsev K.V. // Nucl. Fusion. 2015. V. 55. P. 053009. https://doi.org/10.1088/0029-5515/55/5/053009
  25. Bagryansky P.A., Gospodchikov E.D., Kovalenko Yu.V., Lizunov A.A., Maximov V.V., Murakhtin S.V., Pinzhe-nin E.I., Prikhodko V.V., Savkin V.Ya., Shalashov A.G., Soldatkina E.I., Solomakhin A.L. and Yakovlev D.V. // Fus. Sci. Technol. 2015. V. 68. № 1. P. 87. https://doi.org/10.13182/FST14-864
  26. Arzhannikov A.V., Astrelin V.T., Burdakov A.V., Ivanen-ko V.G., Koidan V.S., Konyukhov V.V., Makarov A.G., Mekler K.I., Melnikov P.I., Nikolaev V.S., Perin S.S., Polosatkin S.V., Postupaev V.V., Rovenskikh A.F., Sinitsky S.L. // Fusion Technology. 1999. V. 35. № 1T. P. 112. https://doi.org/10.13182/FST99-A11963834
  27. Kotelnikov I., Chen Z., Bagryansky P., Sudnikov A., Zeng Q., Yakovlev D., Wang F., Ivanov A., Wu Y. // Nucl. Fusion. 2020. V. 60. № 6. P. 067001. https://doi.org/10.1088/1741-4326/ab81ab
  28. Yu M., Sanwalka K., Bohm T., Forest C., Anderson J., WHAM Collaboration Team // APS Division of Plasma Physics Meeting 2021, abstract id.TP11.073.
  29. Gota H., Binderbauer M.W., Tajima T., Putvinski S., Tuszewski M., Dettrick S., Garate E., Korepanov S., Smirnov A., Thompson M.C., Trask E., Yang X., Schmitz L., Lin Z., Ivanov A.A., Asai T., Allfrey I., Andow R., Beall M., Bolte N., Bui D.Q., Cappello M., Ceccherini F., Clary R., Cheung A.H., Conroy K., Deng B.H., Dou-glass J., Dunaevsky A., Feng P., Fulton D., Galeotti L., Granstedt E., Griswold M., Gupta D., Gupta S., Hub-bard K., Isakov I., Kinley J.S., Knapp K., Magee R., Matvienko V., Mendoza R., Mok Y., Necas A., Primave-ra S., Onofri M., Osin D., Rath N., Roche T., Romero J., Schindler T., Schroeder J.H., Sevier L., Sheftman D., Sibley A., Song Y., Steinhauer L.C., Valentine T., Van Drie A.D., Walters J.K., Waggoner W., Yushmanov P., Zhai K. and The TAE Team // Nucl. Fusion. 2017. V. 57. № 11. P. 116021, https://doi.org/10.1088/1741-4326/aa7d7b
  30. Черноштанов И.С. // Физика плазмы. 2022. № 2. С. 99. https://doi.org/10.31857/S0367292122020056
  31. Burdakov A., Azhannikov A., Astrelin V., Beklemishev A., Burmasov V., Derevyankin G., Ivanenko V., Ivanov I., Ivantsivsky M., Kandaurov I., Konyukhov V., Kotelnikov I., Kovenya V., Kozlinskaya T., Kuklin K., Kuznetsov A., Kuznetsov S., Lotov K., Timofeev I., Makarov A., Mek-ler K., Nikolaev V., Popov S., Postupaev V., Polosatkin S., Rovenskikh A., Shoshin A., Shvab I., Sinitsky S., Sulya-ev Yu., Stepanov V., Trunyov Yu., Vyacheslavov L., Zhukov V., Zubairov Ed. // Fusion Science and Technology. 2007. V. 51. № 2T. P. 106. https://doi.org/10.13182/FST07-A1327
  32. Burdakov A.V., Arzhannikov A.V., Astrelin V.T., Beklemishev A.D., Ivanov A.A., Kotelnikov I.A., Kruglyakov E.P., Polosatkin S.V., Postupaev V.V., Sinitsky S.L., Timofe-ev I.V., Zhukov V.P. // Fusion Science and Technology. 2011. V. 59. № 1T. P. 9. https://doi.org/10.13182/FST11-A11564
  33. Иванов А.А., Приходько В.В. // УФН. 2017. Т. 187. № 5. С. 547. https://doi.org/10.3367/UFNr.2016.09.037967
  34. Бурдаков А.В., Поступаев В.В. // УФН. 2018. Т. 188. № 6. С. 651. https://doi.org/10.3367/UFNr.2018.03.038342
  35. Beklemishev A.D. // Fusion Science and Technology. 2013. V. 63. № 1T. P. 355. https://doi.org/10.13182/FST13-A16953
  36. Beklemishev A.D., Bagryansky P.A., Chaschin M.S., Soldatkina E.I. // Fusion Science and Technology. 2010. V. 57. № 4. P. 351. https://doi.org/10.13182/FST10-A9497
  37. Yakovlev D.V., Shalashov A.G., Gospodchikov E.D., Maximov V.V., Prikhodko V.V., Savkin V.Ya., Soldatki-na E.I., Solomakhin A.L., Bagryansky P.A. // Nucl. Fusion. 2018. V. 58. № 9. P. 094001. https://doi.org/10.1088/1741-4326/aacb88
  38. Хвостенко П.П., Анашкин И.О., Бондарчук Э.Н., Инютин Н.В., Крылов В.А., Левин И.В., Минеев А.Б., Соколов М.М. // ВАНТ. Сер. Термоядерный синтез. 2019. Т. 42. Вып. 1. С. 15. https://doi.org/10.21517/0202-3822-2019-42-1-15-38
  39. Anderson J., Clark M., Forest C., Geiger B., Mirnov V., Oliva S., Pizzo J., Schmitz O., Wallace J., Kristofek G., Mumgaard R., Peterson E., Ram A., Whyte D., Wright J., Wukitch S., Green D., Harvey R., Petrov Yu.V., Srinivisan B. // Proc. 62nd Annual Meeting of the APS Division of Plasma Physics. 2020. V. 65. № 11. abstract id. CP20.00003
  40. Gryaznevich M., TE. Ltd Physics Team and TE. Ltd HTS Team for Tokamak Energy Ltd. // Nucl. Fusion. 2022. V. 62. № 4. P. 042008. https://doi.org/10.1088/1741-4326/ac26ee
  41. Molodyk A., Samoilenkov S., Markelov A., Degtyarenko P., Lee S., Petrykin V., Gaifullin M., Mankevich A., Vavilov A., Sorbom B., Cheng J., Garberg S., Kesler L., Hartwig Z., Gavrilkin S., Tsvetkov A., Okada T., Awaji S., Abrai-mov D., Francis A., Bradford G., Larbalestier D., Senatore C., Bonura M., Pantoja A.E., Wimbush S.C., Strickland N.M., Vasiliev A. // Sci. Rep. 2021. V. 11. N. 2084. https://doi.org/10.1038/s41598-021-81559-z
  42. Gupta R., Anerella M., Joshi P., Higgins J., Lalitha S., Sampson W., Schmalzle J., Wanderer P. // IEEE Transactions on Applied Superconductivity. 2016. V. 26. № 4. https://doi.org/10.1109/TASC.2016.2517404
  43. Vorobieva A., Shikov A., Silaev A., Dergunova E., Lomaev V., Nasibulin M., Mareev K., Kuznetsov S. // IEEE Transactions on Applied Superconductivity. 2001. V. 11. № 1. https://doi.org/10.1109/77.919840
  44. Feist J.-H., Stäbler A., Ert W., Heinemann B., Speth E. // Proc. 17th Symposium On Fusion Technology, Rome, Italy. 1992. P. 262. https://doi.org/10.1016/B978-0-444-89995-8.50044-8
  45. Бендер Е.Д. // ВАНТ: Сер. Термоядерный синтез. 1987. Вып. 4. С. 41.
  46. Bagryansky P.A., Bender E.D., Ivanov A.A., Karpu-shov A.N., Murachtin S.V., Noack K., Krahl St., Col-latz S. // Journal of Nuclear Materials. 1999. V. 265. Iss. 1–2. P. 124. https://doi.org/10.1016/S0022-3115(98)00510-8
  47. Gota H., Binderbauer M.W., Tajima T., Smirnov A., Putvinski S., Tuszewski M., Dettrick S.A., Gupta D.K., Korepanov S., Magee R.M., Park J., Roche T., Romero J.A., Trask E., Yang X., Yushmanov P., Zhai K., DeHaas T., Griswold M.E., Gupta S., Abramov S., Alexander A., Allfrey I., Andow R., Barnett B., Beall M., Bolte N.G., Bomgardner E., Bondarenko A., Ceccherini F., Chao L., Clary R., Cooper A., Deng C., Dunaevsky A., Feng P., Finucane C., Fluegge D., Galeotti L., Galkin S., Galvin K., Granstedt E.M., Hubbard K., Isakov I., Kaur M., Kin-ley J.S., Korepanov A., Krause S., Lau C.K., Lednev A., Leinweber H., Leuenberger J., Lieurance D., Madura D., Margo J., Marshall D., Marshall R., Matsumoto T., Matvienko V., Meekins M., Melian W., Mendoza R., Mi-chel R., Mok Y., Morehouse M., Morris R., Morton L., Nations M., Necas A., Nicks S., Nwoke G., Onofri M., Ottaviano A., Page R., Parke E., Phung K., Player G., Sato I., Schindler T.M., Schroeder J.H., Sheftman D., Sibley A., Siddiq A., Signorelli M., Slepchenkov M., Smith R.J., Snitchler G., Sokolov V., Song Y., Stein-hauer L.C., Stylianou V., Sweeney J., Titus J.B., Tka-chev A., Tobin M., Ufnal J., Valentine T., Van Drie A.D., Ward J., Weixel C., White C., Wollenberg M., Ziaei S., the TAE Team, Schmitz L., Lin Z., Ivanov A.A., Asai T., Baltz E.A., Dikovsky M., Heavlin W.D., Geraedts S., Langmore I., Norgaard P.C., Von Behren R., Madams T., Kast A., Platt J.C. // Nucl. Fusion. 2021. V. 61. P. 106039. https://doi.org/10.1088/1741-4326/ac2521
  48. Deichuli P., Davydenko V., Ivanov A., Korepanov S., Mishagin V., Smirnov A., Sorokin A., Stupishin N. // Review of Scientific Instruments. 2015. V. 86. P. 113509. https://doi.org/10.1063/1.4936292
  49. Ryutov D.D. // Fusion Science and Technology. 2005. V. 47. № 1T. P. 148. https://doi.org/10.13182/FST05-A627
  50. Soldatkina E.I., Pinzhenin E.I., Korobeynikova O.A., Maximov V.V., Yakovlev D.V., Solomakhin A.L., Sav-kin V.Ya., Kolesnichenko K.S., Ivanov A.A., Trunev Yu.A., Voskoboynikov R.V., Shulzhenko G.I., Annenkov V.V., Volchok E.P., Timofeev I.V., Bagryansky P.A. // Nucl. Fusion. 2022. V. 62. № 6. P. 066033. https://doi.org/10.1088/1741-4326/ac3be3
  51. Timofeev I.V., Annenkov V.V., Volchok E.P., Glinskiy V.V. // Nucl. Fusion. 2022. V. 62. № 6. P. 066034. https://doi.org/10.1088/1741-4326/ac3cdc
  52. Жильцов В.А., Куянов А.Ю., Сковорода А.А., Тимофеев А.В. // Физика плазмы. 1994. Т. 20. № 3. С. 267.
  53. Ichimura K., Ichimura K., Nakashima Y., Takeda H., Hosoi K., Kigure S., Takahashi S., Iwamoto M., Hosoda Y., Hirata M., Ikezoe R., Oki K., Yoshikawa M., Saka-moto M., Imai T., Ichimura M. // Plasma and Fusion Research. 2014. V. 9. P. 3406098. https://doi.org/10.1585/pfr.9.3406098
  54. Yakovlev D.V., Shalashov A.G., Gospodchikov E.D., So-lomakhin A.L., Savkin V.Ya., Bagryansky P.A. // Nucl. Fusion. 2017. V. 57. № 1. P. 016033. https://doi.org/10.1088/0029-5515/57/1/016033
  55. Kojima S., Hanada K., Idei H., Onchi T., Ikezoe R., Nagashima Y., Hasegawa M., Kuroda K., Nakamura K., Higashijima A., Nagata T., Kawasaki S., Shimabukuro S., Elserafy H., Fukuyama M., Ejiri A., Shikama T., Yone-da N., Yoneda R., Kariya T., Takase Y., Murakami S., Bertelli N. and Ono M. // Plasma Phys. Control. Fusion. 2021. V. 63 P. 105002. https://doi.org/10.1088/1361-6587/ac1838
  56. Родионов С.Н. // Атомная энергия. 1959. Т. 6. Вып. 6. С. 623
  57. Сивухин Д.В. Вопросы теории плазмы / Под. ред. М.А. Леонтовича. М.: Атомиздат, 1964. Вып. 4. С. 81.
  58. Мирнов В.В., Рютов Д.Д. // Письма в ЖТФ. 1979. Т. 5. С. 678.
  59. Edited by Kikuchi M., Lackner K., Tran M.H. Fusion Physics. Vienna: International Atomic Energy Agency, 2012.
  60. Конкашбаев И.К., Ландман И.С., Улинич Ф.Р. // ЖЭТФ. 1978. Т. 74. Вып. 3. С. 956.
  61. Юшманов Е.Е. // ЖЭТФ. 1965. Т. 49. Вып. 2(8). С. 588.
  62. Skovorodin D.I. // Phys. Plasmas. 2019. V. 26. № 1. P. 012503. https://doi.org/10.1063/1.5043072
  63. Abramov I.S., Gospodchikov E.D., Shaposhnikov R.A., Shalashov A.G. // Nucl. Fusion. 2019. V. 59. № 10. P. 106004. https://doi.org/10.1088/1741-4326/ab2ef8
  64. Dettrick S.A., Barnes D.C., Ceccherini F., Galeotti L., Galkin S.A., Gupta S., Hubbard K., Koshkarov O., Lau C.K., Mok Y., Necas A., Nicks B.S., Onofri M., Park J., Putvinski S.V., Steinhauer L.C., Yakymenko K., Yushmanov P.N., Tajima T., Belova E.V., Lin Z., Wang W. and Wei X. // Nucl. Fusion. 2021. V. 61. № 10. P. 106038. https://doi.org/10.1088/1741-4326/ac1e5f
  65. Abramov I.S., Gospodchikov E.D., Shaposhnikov R.A., Shalashov A.G. // Rev. Sci. Instrum. 2020. V. 91. № 1. P. 013514. https://doi.org/10.1063/1.5127574
  66. Котельников И.А., Рютов Д.Д., Цидулко Ю.А., Катышев В.В., Комин А.В., Кривошеев В.М. Препринт ИЯФ СОАН СССР, № 90-105. Новосибирск, 1990.
  67. Yang W., Zeng Q., Chen C., Chen Z., Song J., Wang Z., Yu J., Yakovlev D., Prikhodko V. // Fusion Engineering and Design. 2021. V. 164. P. 112221. https://doi.org/10.1016/j.fusengdes.2020.112221
  68. Юров Д.В., Приходько В.В., Цидулко Ю.А. // Физика плазмы. 2016. Т. 42. № 3.
  69. Пастухов В.П. Вопросы теории плазмы / Под. ред. М.А. Леонтовича. М.: Атомиздат, 1964. Вып. 13. С. 160.
  70. LoarteA., Lipschultz B., Kukushkin A.S., Matthews G.F., Stangeby P.C., Asakura N., Counsell G.F., Federici G., Kallenbach A., Krieger K., Mahdavi A., Philipps V., Reiter D., Roth J., Strachan J., Whyte D., Doerner R., Eich T., Fundamenski W., Herrmann A., Fensterma-cher M., Ghendrih P., Groth M., Kirschner A., Konoshima S., LaBombard B., Lang P., Leonard A.W., Monier-Garbet P., Neu R., Pacher H., Pegourie B., Pitts R.A., Takamura S., Terry J., Tsitrone E. and the ITPA Scrape-off Layer and Divertor Physics Topical Group. // Nucl. Fusion. 2007. V. 347. № 6. P. 2391. https://doi.org/10.1088/0029-5515/47/6/S04
  71. Berman A. // Vacuum. 1996. V. 47. № 4. P. 327. https://doi.org/10.1016/0042-207X(95)00246-4
  72. Yamanaka S., Miyake M. // SSP 2000; 73–75: 1–40. https://doi.org/10.4028/www.scientific.net/ssp.73-75.1
  73. Chandler W.T., Walter R.J. (1968). In: Machlin I., Begley R.T., Weisert E.D. (eds) Refractory Metal Alloys Metallurgy and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9120-3_6
  74. Wu C.H. Hydrogen Recycling at Plasma Facing Materials. Springer Dordrecht, 2000. https://doi.org/10.1007/978-94-011-4331-8
  75. Ryutov D.D., Yushmanov P.N., Barnes D.C., Putvin-ski S.V. // AIP Conf. Proc. 2016. V. 1721. P. 060003. https://doi.org/10.1063/1.4944029
  76. Janev R.K., Langer W.D., Post D.E., Evans K. Elementary Processes in Hydrogen-Helium Plasmas Cross Sections and Reaction Rate Coefficient. Springer-Verlag, Berlin Heidelberg 1987.https://doi.org/10.1007/978-3-642-71935-6
  77. Combs S.K., Baylor L.R. // Fusion Science and Technology. 2018. V. 73. № 4. P. 493. https://doi.org/10.1080/15361055.2017.1421367
  78. Sladkomedova A.D., Voronin A.N., Alekseev A.G., Gu-sev V.K., Kurskiev G.S., Petrov Yu.V., Sakharov N.V., Tolstyakov S.Yu., Zabrodsky V.V. // Physica Scripta. 2018. V. 93. № 3. P. 105601. https://doi.org/10.1088/1402-4896/aadb85
  79. Ryutov D.D., Berk H.L., Cohen B.I., Molvik A.W., Simonen T.C. // Phys. Plasmas. 2011. V. 18. P. 092301. https://doi.org/10.1063/1.3624763
  80. Beklemishev A.D. // AIP Conf. Proc. 2008. V. 1069. № 1. P. 3–14. https://doi.org/10.1063/1.3033729
  81. Prikhodko V.V., Bagryansky P.A., Beklemishev A.D., Kolesnikov E.Yu., Kotelnikov I.A., Maximov V.V., Pushkareva A.N., Soldatkina E.I., Tsidulko Yu.A., Zay-tsev K.V. // Fusion Science and Technology. 2011. V. 59. № 1T. P. 94. https://doi.org/10.13182/FST11-A11582
  82. Kotelnikov I., Zeng Q., Prikhodko V., Yakovlev D., Zhang K., Chen Z., Yu J. // Nucl. Fusion. 2022. V. 62. P. 096025. https://doi.org/10.1088/1741-4326/ac81da
  83. Waelbroeck F., Chen L. // Physics of Fluids B: Plasma Physics. 1991. V. 3. № 3. P. 601. https://doi.org/10.1063/1.859858
  84. Cho T., Kohagura J., Numakura T., Hirata M., Higaki H., Hojo H., Ichimura M., Ishii K., Islam K. Md., Itakura A., Katanuma I., Minami R., Nakashima Y., Saito T., Tatematsu Y., Watanabe O., Yoshikawa M., Kojima A., Miya-ke Y., Miyata Y., Shimizu K., Tomii Y., Yoshida M., Sa-kamoto K., Imai T., Pastukhov V. P., Miyoshi S. and GAMMA 10 Group // Phys. Rev. Lett. 2006. V. 97. P.055001. https://doi.org/10.1103/PhysRevLett.97.055001
  85. Cho T., Pastukhov V.P., Horton W., Numakura T., Hirata M., Kohagura J., Chudin N.V., Pratt J. // Phys. Plasmas. 2008. V. 15. P. 056120. https://doi.org/10.1063/1.2906262
  86. Pastukhov V.P., Chudin V.N. // Fus. Sci. Technol. 2011. V. 59. № 1T. P. 84. https://doi.org/10.13182/FST11-A11580
  87. Сагдеев Р.З., Шафранов В.Д. // ЖЭТФ. 1960. Т. 39. С. 181.
  88. Watson D.C. // Phys. Fluids. 1980. V. 23. P. 2485.https://doi.org/10.1063/1.862949
  89. Smith G.R. // Phys. Fluids. 1984. V. 27. № 6.https://doi.org/10.1063/1.864773
  90. Smith G.R., Nevins W.M., Sharp W.M. // Phys. Fluids. 1984. V. 27. № 8. https://doi.org/10.1063/1.864837
  91. Цидулко Ю.А., Черноштанов И.С. // Физика плазмы. 2014. Т. 40. № 12. https://doi.org/10.7868/S0367292114120075
  92. Casper T.A., Smith G.R. // Phys. Rev. Lett. 1982. V. 48. № 1015. https://doi.org/. 48.1015https://doi.org/10.1103/PhysRevLett
  93. Simonen T.C. // Nucl. Fusion. 1985. V. 25. № 1205. https://doi.org/10.1088/0029-5515/25/9/036
  94. Katsumata R., Ichimura M., Inutake M., Hojo H., Mase A., Tamano T. // Phys. Plasmas. 1996. V. 3. № 12. https://doi.org/10.1063/1.872067
  95. Zaytsev K.V., Anikeev A.V., Bagryansky P.A., Donin A.S., Korobeinikova O.A., Korzhavina M.S., Kovalenko Yu.V., Lizunov A.A., Maximov V.V., Pinzhenin E.I., Prikhod-ko V.V., Soldatkina E.I., Solomakhin A.L., Savkin V.Ya., Yakovlev D.V. // Physica Scripta. 2014. N. 161T. https://doi.org/10.1088/0031-8949/2014/T161/014004
  96. Аникеев А.В., Багрянский П.А., Зайцев К.В., Коробейникова О.А., Мурахтин С.В., Сковородин Д.И., Юров Д.В. // Физика плазмы. 2015. Т. 4. № 10. С. 839. https://doi.org/10.1134/S1063780X15100025
  97. Anikeev A.V., Bagryansky P.A., Chernoshtanov I.S., Korzhavina M.S., Prikhodko V.V., Tsidulko Yu.A. // Fusion Science and Technology. V. 2011. V. 59. № 1T. https://doi.org/dx.doi.org/10.13182/FST11-A11584
  98. Berzins L.V., Casper T.A. // Phys. Rew. Lett. 1987. V. 59. P. 1428. https://doi.org/10.1103/Phys-RevLett.59.1428
  99. Chernoshtanov I.S. // IOP Conf. Series: Journal of Physics: Conf. Series. 2018. V. 1125. P. 012007. https://doi.org/10.1088/1742-6596/1125/1/012007
  100. Turner W.C., Clauser J.F., Coensgen F.H., Correll D.L., Cummins W.F., Freis R.P., Goodman R.K., Hunt A.L., Kaiser T.B., Melin G.M., Nexsen W.E., Simonen T.C., Stallard B.W. // Nucl. Fusion. 1979. V. 19. P. 1011. https://doi.org/10.1088/0029-5515/19/8/002
  101. Михайловский А.Б. Ядерный синтез. 1965. Т. 5. С. 125.
  102. Post R.F., Rosenbluth M.N. // Phys. Fluids. 1966. V. 9. № 4. P. 730. https://doi.org/10.1063/1.1761740
  103. Gerver M.J. // Phys. Fluids. 1996. V. 19. P. 1581. https://doi.org/10.1063/1.861363
  104. Kotelnikov I.A., Chernoshtanov I.S., Prikhodko V.V. // Phys. Plasmas. 2017. V. 24. № 12. https://doi.org./10.1063/1.5013059
  105. Tang W.M., Pearlstein L.D., Berk H.L. // Phys. Fluids. 1996. V. 15. P. 1153. https://doi.org/10.1063/1.1694044
  106. Chulkov G.N., Timofeev A.V. // Nucl. Fusion. 1980. V. 20. № 9. P. 165. https://doi.org/10.1088/0029-5515/20/1/002
  107. Канаев Б.И., Юшманов Е.Е. // ЖЭТФ. 1974. Т. 67. Вып. 2. С. 586.
  108. Канаев Б.И., Пастухов В.П., Юшманов Е.Е. // Письма в ЖЭТФ. 1973. Т. 18. Вып. 6. С. 347.
  109. Baldwin D.E., Berk H.L., Pearlstein L.D. // Phys. Rew. Lett. 1976. V. 36. P. 1051. https://doi.org/10.1103/PhysRevLett.36.1051
  110. Kotelnikov I.A., Chernoshtanov I.S., Prikhodko V.V. // Plasma and Fusion Research. 2019. V. 14. P. 2403001. https://doi.org/10.1585/pfr.14.2403001
  111. Haines M.G. // Nucl. Fusion. 1977. V. 17. № 4. P. 811. https://doi.org/10.1088/0029-5515/17/4/015
  112. Ланский И.М. Препринт ИЯФ СО РАН, № 93–96. Новосибирск, 1993
  113. Grad H. // Proc. Symposia in Applied Mathematics / Ed. by Harold Grad. Providence, Rhode Island, 1967. V. 18. P. 162. https://doi.org/10.1090/psapm/018/0215567
  114. Newcomb Wi.A. // Journal of Plasma Physics. 1981. V. 26. № 3. P. 529. https://doi.org/10.1017/S0022377800010904
  115. Kotelnikov I.A., Bagryansky P.A. and Prikhodko V.V. // Physical Review E. 2010. V. 81. № 6. P. 067402. https://doi.org/10.1103/PhysRevE.81.067402
  116. Kotelnikov I.A. // Fusion Science and Technology. 2011. V. 59. № 1T. P. 47. https://doi.org/10.13182/FST11-A11572
  117. Lotov K.V. // Phys. Plasmas. 1996. V. 3. P. 1472. https://doi.org/10.1063/1.871739
  118. Житлухин А.М., Сафронов В.М., Сиднее В.В., Скворцов Ю.В. // Письма в ЖЭТФ. 1984. Т. 39. С. 247.
  119. Turner J.M., Burlaga L.F., Ness N.F., Lemaire J.F. // Journal of Geophysical Research. 1977. V. 82. № 13. P. 1921. https://doi.org/10.1029/JA082i013p01921
  120. Kaufmann R.L., Jiann-Tsorng H. and Wolfe A. // Journal of Geophysical Research. 1970. V. 75. № 25. P. 4666. https://doi.org/10.1029/JA075i025p04666
  121. Tsurutani, Bruce T., Gurbax. S., Lakhina, Verkhoglyadova O.P., Echer E., Guarnieri F.L., Narita Y., Constantinescu D.O. // Journal of Geophysical Research: Space Physics. 2011. V. 116. № A2. P. A02103. https://doi.org/10.1029/2010JA015913
  122. Kuznetsov E.A., Passot T., Ruban V.P., Sulem P.L. // Phys. Plasmas. 2015. V. 22. № 4. P. 042114. https://doi.org/10.1063/1.4919027
  123. Иоффе М.С., Канаев Б.И., Пастухов В.П., Питерский В.В., Юшманов Е.Е. // Итоги науки и техники. Физика плазмы. Т. 9 / Под ред. Шафранова. М.: ВИНИТИ. 1989.
  124. Морозов А.И., Савельев В.В. // УФН. 1998. Т. 168. Вып. 11. С. 1153. https://doi.org/10.3367/UFNr.0168.199811a.1153
  125. Khristo M.S., Beklemishev A.D. // Plasma and Fusion Research. 2019. V. 14. P. 2403007. https://doi.org/10.1585/pfr.14.2403007
  126. Khristo M.S., Beklemishev A.D. // Plasma Physics and Controlled Fusion. 2022. V. 64. № 9. P. 095019. https://doi.org/10.1088/1361-6587/ac8616
  127. Багрянский П.А., Солдаткина Е.И., Соломахин А.Л. // Физика плазмы. 2008. Т. 34. Вып. 4. С. 259.
  128. Kaiser T.B., Pearlstein L.D. // Physics of Fluids. 1985. V. 28. № 3. P.1003. https://doi.org/10.1063/1.865092
  129. Berk H.L., Wong H.V., Tsang K.T. // Physics of Fluids. 1987. V. 30. № 9. P. 2681. https://doi.org/10.1063/1.866033
  130. Kotelnikov I. // Plasma Physics and Controlled Fusion. 2020. V. 62. № 7. P. 75002. https://doi.org/10.1088/1361-6587/ab8a63
  131. Chernoshtanov I.S. // 2020. arXiv:2002.03535v1. http://arxiv.org/abs/2002.03535
  132. Morse L.R. // Phys. Fluids. 1967. V. 10. № 7. https://doi.org/10.1063/1.1762322
  133. Котельников И.А., Щетников А.И. Препринт ИЯФ СОАН СССР. № 87-10. Новосибирск, 1987.
  134. Kotelnikov I.A. // Proc. Int. Conf. Open Plasma Confinement Systems for Fusion / Ed by A.A. Kabantse, Novosibirsk, 1993 P. 545, Singapore, 1993. IAEA, World Scientific.
  135. Пастухов В.П. // Физика плазмы. 1980. Т. 6. № 5. С. 1003.
  136. Пастухов В.П. // Физика плазмы. 2021. Т. 47. № 9. С. 808.
  137. Magee R.M., Roche T., Thompson M.C., Tobin M., Beall M., Deng B.H., Korepanov S. // Nucl. Fusion. 2018. V. 58. № 8. P. 082011. https://doi.org/10.1088/1741-4326/aab6c6
  138. Magee R.M., Necas A., Clary R., Korepanov S., Nicks S., Roche T., Thompson M.C., Binderbauer M.W. and Tajima T. // Nature Physics. 2019. V. 15. № 3. P. 281. https://doi.org/10.1038/s41567-018-0389-0
  139. Mirnov V.V., Lichtenberg A.J. “Multiple-mirror plasma confinement / Reviews of Plasma Physics. V. 19 / Ed by B.B. Kadomtsev. New York, 1996. P. 53.
  140. Huba J.D. “NRL plasma formulary”, Naval Research Laboratory, Washington, DC, 2013.
  141. Князев Б.А., Мирнов В.В., Чеботаев П.З. // Вопросы атомной науки и техники. Сер. Термоядерный синтез. 1983. № 3 (13). С. 12.
  142. Астрелин В.Т., Бурдаков А.В., Поступаев В.В. // Физика плазмы, 24, 450–462 (1998).
  143. Аржанников А.В., Астрелин В.Т., Бурдаков А.В., Иванов И.А., Койдан В.С., Меклер К.И., Поступа-ев В.В., Ровенских А.Ф., Полосаткин С.В., Синицкий С.Л. // Письма в ЖЭТФ. 2003. Т. 77. С. 426.
  144. Beklemishev A.D. // Fusion Sci. Technol. 2007. V. 51. № 2T. P. 180. https://doi.org/10.13182/FST07-A1344
  145. Rosenbluth M.N., Longmire C.L. // Ann. Phys. 1957. V. 1. P. 120. https://doi.org/10.1016/0003-4916(57)90055-6
  146. Васильев Ю.В., Мирнов В.В. // Прикладная механика и техническая физика. 1974. № 6. С. 14.
  147. Najmabadi F., Lichtenberg A.J., Lieberman M.A. // Phys. Fluids. 1983. V. 26. № 4. P. 1018. https://doi.org/10.1063/1.864233
  148. Beklemishev A.D. // Phys. Plasmas. 2015. V. 22. P. 103506. https://doi.org/10.1063/1.4932075
  149. Postupaev V.V., Sudnikov A.V., Beklemishev A.D., Ivanov I.A. // Fusion Eng. Des. 2016. V. 106. P. 29–33. https://doi.org/10.1016/j.fusengdes.2016.03.029
  150. Sudnikov A.V., Beklemishev A.D., Postupaev V.V., Burdakov A.V., Ivanov I.A., Vasilyeva N.G., Kuklin K.N., Sidorov E.N. // Fusion Eng. Design. 2017. V. 122. P. 86. https://doi.org/10.1016/j.fusengdes.2017.09.005
  151. Sudnikov A.V., Beklemishev A.D., Postupaev V.V., Iva-nov I.A., Inzhevatkina A.A., Sklyarov V.F., Burdakov A.V., Kuklin K.N., Rovenskikh A.F., Melnikov N.A. // Plasma Fusion Res. 2019. V. 14. P. 2402023. https://doi.org/10.1585/pfr.14.2402023
  152. Sudnikov A.V., Ivanov I.A., Inzhevatkina A.A., Larichkin M.V., Lomov K.A., Postupaev V.V., Tolkachev M.S., Ustyuzhanin V.O. // Journal of Plasma Physics. 2022. V. 88. № 1. P. 905880102. https://doi.org/10.1017/S0022377821001276
  153. Chernoshtanov I.S., Ayupov D.A. // Phys. Plasmas. 2021. V. 28. № 3. P. 032502. https://doi.org/10.1063/5.0040715
  154. Postupaev V.V., Burdakov A.V., Ivanov A.A. // Fusion Sci. Technol. 2015. V. 68. P. 92. https://doi.org/10.13182/FST14-846
  155. Поступаев В.В., Юров Д.В. // Физика плазмы. 2016. Т. 42. С. 966. https://doi.org/10.7868/S036729211611007X
  156. Postupaev V.V., Batkin V.I., Beklemishev A.D., Burda-kov A.V., Burmasov V.S., Chernoshtanov I.S., Gorbov-sky A.I., Ivanov I.A., Kuklin K.N., Mekler K.I., Rovenskikh A.F., Sidorov E.N., Yurov D.V. // Nucl. Fusion. 2017. V. 57. P. 036012. https://doi.org/10.1088/1741-4326/57/3/036012
  157. Ivanov I.A., Batkin V.I., Burdakov A.V., Burmasov V.S., Kuklin K.N., Mekler K.I., Polosatkin S.V., Postupa-ev V.V., Sidorov E.N., Rovenskikh A.F. // AIP Advances. 2017. V. 7. P. 125121. https://doi.org/10.1063/1.5009528
  158. Postupaev V.V., Batkin V.I., Burdakov A.V., Burma-sov V.S., Ivanov I.A., Kuklin K.N., Mekler K.I., Rovenskikh A.F., Sidorov E.N. // Plasma Phys. Contr. Fusion. 2020. V. 62. P. 025008. https://doi.org/10.1088/1361-6587/ab53c2
  159. Mirnov V.V., Ryutov D.D. // Nucl. Fusion. 1972. V. 12. P. 627. [with corrigenda Mirnov V.V., Ryutov D.D. // Nucl. Fusion. 1973. V. 13. P. 314. https://doi.org/10.1088/0029-5515/13/2/029]https://doi.org/10.1088/0029-5515/12/6/001
  160. Postupaev V.V., Batkin V.I., Burdakov A.V., Burma-sov V.S., Ivanov I.A., Kuklin K.N., Lykova Yu.A., Melnikov N.A., Mekler K.I., Nikishin A.V., Polosatkin S.V., Rovenskikh A.F., Sidorov E.N., Skovorodin D.I. // N-ucl. Fusion. 2022, V. 62. № 8. P. 086003. https://doi.org/10.1088/1741-4326/ac69fa
  161. Поступаев В.В., Баткин В.И., Бурдаков А.В., Бурмасов В.С., Иванов И.А., Куклин К.Н., Лыкова Ю.А., Меклер К.И., Мельников Н.А., Никишин А.В., Полосаткин С.В., Ровенских А.Ф., Сидоров Е.Н., Скля-ров В.Ф., Сковородин Д.И. // Физика плазмы. 2022. Т. 48. № 11. С. 1005. https://doi.org/10.31857/S0367292122600340

Copyright (c) 2023 Д.И. Сковородин, И.С. Черноштанов, В.Х. Амиров, В.Т. Астрелин, П.А. Багрянский, А.Д. Беклемишев, А.В. Бурдаков, А.И. Горбовский, И.А. Котельников, Э.М. Магоммедов, С.В. Полосаткин, В.В. Поступаев, В.В. Приходько, В.Я. Савкин, Е.И. Солдаткина, А.Л. Соломахин, А.В. Сорокин, А.В. Судников, М.С. Христо, С.В. Шиянков, Д.В. Яковлев, В.И. Щербаков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies