Laser-Induced Quenching Diagnostics of T-15MD Divertor Plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Diagnostics based on laser-induced quenching (LIQ) and laser-induced fluorescence (LIF) is planned to be used at the T-15MD tokamak for local measurements of the atomic hydrogen density na(HI) in divertor plasma. Both physical and technical aspects of the diagnostic system development are considered. For plasma diagnostic, it is proposed to use the time-modulated thulium fiber laser with the wavelength of 1875 nm and peak power of 5 W. Two light collection systems will be used for observing the signals. The intravacuum and “atmospheric” systems will be used for performing measurements in the region of the separatrix strike-point and in the rest of the divertor region, respectively. Using the modified collisional-radiative model, the applicability of the diagnostics was physically justified by the calculations of the expected quenching and fluorescence signals, as well as the background radiation at the wavelengths of hydrogen lines. In the calculations, the 2D-distributions of plasma parameters are used obtained by the SOLPS 4.3 code for tokamak operation scenarios with and without additional plasma heating. When using the LIQ method, the expected errors in measuring the na(HI) density are within 10% for most points and do not exceed 25% for all scenarios of tokamak operation considered, provided that the signals are averaged over 10 ms. The LIF method makes it possible to carry out measurements with relative errors up to 50%.

About the authors

D. D. Krivoruchko

National Research Centre “Kurchatov Institute”; Moscow Institute of Physics and Technology (Research University)

Email: daria.krivoruchko@phystech.edu
123098, Moscow, Russia; 141700, Dolgoprudny, Moscow oblast, Russia

A. V. Gorbunov

National Research Centre “Kurchatov Institute”

Email: daria.krivoruchko@phystech.edu
123098, Moscow, Russia

A. A. Pshenov

National Research Centre “Kurchatov Institute”; National Research Nuclear University “MEPhI”

Email: daria.krivoruchko@phystech.edu
123098, Moscow, Russia; 115409, Moscow, Russia

D. S. Panfilov

National Research Centre “Kurchatov Institute”; National Research Nuclear University “MEPhI”

Author for correspondence.
Email: daria.krivoruchko@phystech.edu
123098, Moscow, Russia; 115409, Moscow, Russia

References

  1. Clark J.G., Bowden M.D., Scannell R. // Review of Scientific Instruments. 2021. T. 92. № 4. C. 043545. https://doi.org/10.1063/5.0043813
  2. Blanchard P., Andrebe Y., Arnichand H., Agnello R., Antonioni S., Couturier S., Decker J., De KerchoveD’Exaerde T., Duval B.P., Furno I., Isoz P.-F., Lavanchy P., Llobet X., Marlétaz B., Masur J. and the TCV team // Journal of Instrumentation. 2019. T. 14. № 09. C. C09013. https://doi.org/10.1088/1748-0221/14/10/C10038
  3. Asadulin G.M., Bel’bas I.S., Gorshkov A.V. // Fusion Engineering and Design. 2022. T. 177. C. 113066.https://doi.org/10.1016/j.fusengdes.2022.113066
  4. Gorbunov A.V., Klyuchnikov L.A., Korobov K.V. // Issues Atomic Sci. Technol. Ser. Thermonucl. Fusion. 2015. T. 2. C. 62.
  5. Verhaegh K., Lipschultz B., Duval B.P., Harrison J.R., Reimerdes H., Theiler C., Labit B., Maurizio R., Mari-ni C., Nespoli F., Sheikh U., Tsuid C.R., Vianello N., Vijvers W.A.J., the TCV team and the EURO fusion MST team // Nuclear Materials and Energy. 2017. T. 12. C. 1112. https://doi.org/10.1016/j.nme.2017.01.004
  6. Isler R.C. // Fusion engineering and design. 1997. T. 34. C. 115.
  7. Soukhanovskii V.A., McLean A.G., Allen S.L. // Review of Scientific Instruments. 2014. T. 85. № 11. C. 11E418. https://doi.org/10.1063/1.4891600
  8. Griener M., Wolfrum E., Cavedon M., Dux R., Rohde V., Sochor M., Muñoz Burgos J.M., Schmitz O., Stroth U. and ASDEX Upgrade Team // Review of Scientific Instruments. 2018. T. 89. № 10. C. 10D102.https://doi.org/10.1063/1.5034446
  9. Agostini M., Scarin P., Cavazzana R., Carraro L., Grando L., Taliercio C., Franchin L.,Tiso A. // Review of Scientific Instruments. 2015. T. 86. № 12. C. 123513.https://doi.org/10.1063/1.4939003
  10. Kim M., Cho M.S., Cho B.I. // Journal of Nuclear Materials. 2017. T. 487. C. 305. https://doi.org/10.1016/j.jnucmat.2017.02.025
  11. Paris P., Piip K., Hakola A., Laan M., Aints M., Koivuranta S., Likonen J., Lissovski A., Mayer M., Neu R., Rohde V., Sugiyama K. and ASDEX Upgrade Team // Fusion Engineering and Design. 2015. T. 98. C. 1349. https://doi.org/10.1016/j.fusengdes.2015.03.004
  12. Krupin V.A., Klyuchnikov L.A., Korobov K.V., Nemets A.R., Nurgaliev M.R., Gorbunov A.V., Naumenkob N.N., Troynova V.I., Tugarinova S.N., Fomin F.V. // Physics of Atomic Nuclei. 2015. T. 78. C. 1164.https://doi.org/10.1134/S1063778815100051
  13. Brix M., Dodt D., Dunai D., Lupelli I., Marsen S., Mel-son T.F., Meszaros B., Morgan P., Petravich G., Refy D.I., Silva C., Stamp M., Szabolics T., Zastrow K.-D., Zolet-nik S. and JET-EFDA Contributors // Review of Scientific Instruments. 2012. T. 83. № 10. C. 10D533.https://doi.org/10.1063/1.4739411
  14. Lomanowski B.A., Meigs A.G., Sharples R.M., Stamp M., Guillemaut C. and JET Contributors // Nuclear Fusion. 2015. T. 55. № 12. C. 123028. https://doi.org/10.1088/0029-5515/55/12/123028
  15. Wu H., Subba F., Wischmeier M., Cavedon M., Zani-no R., ASDEX Upgrade Team // Plasma Physicsand Controlled Fusion. 2021. T. 63. № 10. C. 105005.https://doi.org/10.1088/1361-6587/ac1568
  16. Gorbunov A., Mukhin E., Burgos J.M., Krivoruchko D., Vukolov K., Kurskiev G., Tolstyakov S. // Plasma Physicsand Controlled Fusion. 2022. T. 64. № 11. C. 115004. https://doi.org/10.1088/1361-6587/ac89ad
  17. Gorbunov A.V., Mukhin E.E., Berik E.B., Vukolov K.Y., Lisitsa V.S., Kukushkin A.S., Levashova M.G., Barn-sley R., Vayakis G., Walsh M.J. // Fusion Engineering and Design. 2017. T. 123. C. 695. https://doi.org/10.1016/j.fusengdes.2017.05.129
  18. Gorbunov A.V., Mukhin E.E., Berik E.B., Melkumov M.A., Babinov N.A., Kurskiev G.S., Tolstyakov S.Yu., Vukolo-va K.Yu., Lisitsa V.S., Levashova M.G., Andrew P., Kempenaars M., Vayakis G., Walsh M.J. // Fusion Engineering and Design. 2019. T. 146. C. 2703.https://doi.org/10.1016/j.fusengdes.2019.04.091
  19. Gohil P., Burgess D.D. // Plasmaphysics. 1983. T. 25. № 10. C. 1149.
  20. Gorbunov A.V., Molodtsov N.A., Moskalenko I.V., Shcheglov D.A // Review of Scientific Instruments. 2010. T. 81. № 10. C. 10D712.doi: doi.org/https://doi.org/10.1063/1.3475799
  21. Che Y., Zang Q., Han X., Xiao S., Hu J., Ren M., Liu J., Zhou J. // Fusion Engineering and Design. 2021. T. 169. C. 112699.https://doi.org/10.1016/j.fusengdes.2021.112699
  22. Khvostenko P.P., Anashkin I.O., Bondarchuk E.N., Chudnovsky A.N., Kavin A.A., Khvostenko A.P., Kirne-va N.A., Kuzmin E.G., Levin I.V., Leonov V.M., Lutchenko A.V., Modyaev A.L., Nikolaev A.V., Notkin G.E., Romannikov A.N., Roy I.N., Sokolov M.M., Sush-kov A.V. // Fusion Engineering and Design. 2021. T. 164. C. 112211. https://doi.org/10.1016/j.fusengdes.2020.112211
  23. Loarte A., Lipschultz B., Kukushkin A.S. // Nuclear Fusion. 2007. T. 47. https://doi.org/10.1088/0029-5515/47/6/S04
  24. Kubach T., Lindner P., Kallenbach A., Schumacher U., ASDEX Upgrade Team // 31st European Physical Society Conference on Plasma Physics. European Physical Society, 2004.
  25. Razdobarin G.T., Semenov V.V., Sokolova L.V., Folom-kin I.P., Burakov V.S., Misakov P.Y., Naumenkov P.A., Nechaev S.V. // Nuclear Fusion. 1979. T. 19. № 11. C. 1439. https://doi.org/10.1088/0029-5515/19/11/004
  26. Асадулин Г.М., Бельбас И.С., Горшков А.В. // ВАНТ. Сер. Термоядерный синтез. 2016. Т. 39. № 2. https://doi.org/10.21517/0202-3822-2016-39-2-91-95
  27. Mukhin E.E., Kurskiev G.S., Gorbunov A.V., Samso-nov D.S., Tolstyakov S.Y., Razdobarin A.G., Babi-nov N.A., Bazhenov A.N., Bukreev I.M., Dmitriev A.M., Elets D.I., Koval1 A.N., Litvinov A.E., Masyukevich S.V., Senitchenkov V.A., Solovei V.A., Tereschenko I.B., Varshavchik L.A., Kukushkin A.S., Khodunov I.A., Levashova M.G., Lisitsa V.S., Vukolov K.Yu., Berik E.B., Chernakov P.V., Chernakov AI.P., Chernakov An.P., Zatil-kin P.A., Zhiltsov N.S., Krivoruchko D.D., Skrylev A.V., Mokeev A.N., Andrew P., Kempenaars M., Vayakis G., Walsh M.J. // Nuclear Fusion. 2019. T. 59. № 8. C. 086052. https://doi.org/10.1088/1741-4326/ab1cd5
  28. Mukhin E.E., Tolstyakov S.Y., Kurskiev G.S., Zhil’-tsov N.S., Koval A.N., Solovei V.A., Gorbunov A.V., Gorshkov A.V., Asadulin G.M., Kornev A.F., Makarov A.M., Bogachev D.L., Babinov N.A., Samsonov D.S., Razdobarin A.G., Bazhenov A.N., Bukreev I.M., Dmitriev A.M., Elets D.I., Senichenkov V.A., Tereshchenko I.B., Varshavchik L.A., Khodunov I.A., Chernakov An.P., Mar-chii G.V., Nikolaenko K.O., Ermakov N.V // Plasma Physics Reports. 2022. T. 48. № 8. C. 866.https://doi.org/10.1134/S1063780X22700301
  29. Pshenov A.A., Kukushkin A.S., Gorbunov A.V., Marenkov E.D. // Nuclear Materials and Energy. 2022. C. 101342. https://doi.org/10.1016/j.nme.2022.101342

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (30KB)
3.

Download (171KB)
4.

Download (504KB)
5.

Download (149KB)
6.

Download (425KB)
7.

Download (261KB)
8.

Download (217KB)
9.

Download (254KB)
10.

Download (159KB)
11.

Download (841KB)
12.

Download (164KB)
13.

Download (449KB)
14.

Download (1MB)
15.

Download (450KB)
16.

Download (486KB)

Copyright (c) 2023 Д.Д. Криворучко, А.В. Горбунов, А.А. Пшенов, Д.С. Панфилов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies