Содержание общей ртути и стабильных изотопов азота и углерода в шерсти белых медведей Российской Арктики
- Авторы: Гремячих В.А.1, Комов В.Т.1,2, Иванов Е.А.3, Мордвинцев И.Н.3, Найденко С.В.3, Платонов Н.Г.3, Мизин И.А.4, Исаченко А.И.5, Лазарева Р.Е.5, Иванова Е.С.2, Ельцова Л.С.2, Рожнов В.В.3
-
Учреждения:
- Институт биологии внутренних вод им. И.Д. Папанина РАН
- Череповецкий государственный университет
- Институт проблем экологии и эволюции им. А.Н. Северцова РАН
- Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лаверова УрО РАН
- ООО «Арктический Научный Центр»
- Выпуск: № 4 (2025)
- Страницы: 318-326
- Раздел: Статьи
- URL: https://journals.rcsi.science/0367-0597/article/view/353743
- DOI: https://doi.org/10.31857/S0367059725040057
- ID: 353743
Цитировать
Аннотация
Ключевые слова
Об авторах
В. А. Гремячих
Институт биологии внутренних вод им. И.Д. Папанина РАНРоссия 152742 Ярославская обл., Некоузский р-н, п. Борок, 109
В. Т. Комов
Институт биологии внутренних вод им. И.Д. Папанина РАН; Череповецкий государственный университетРоссия 152742 Ярославская обл., Некоузский р-н, п. Борок, 109; Россия 162600 Вологодская обл., г. Череповец, просп. Луначарского, 5
Е. А. Иванов
Институт проблем экологии и эволюции им. А.Н. Северцова РАНРоссия 119071 Москва, Ленинский просп., 33
И. Н. Мордвинцев
Институт проблем экологии и эволюции им. А.Н. Северцова РАНРоссия 119071 Москва, Ленинский просп., 33
С. В. Найденко
Институт проблем экологии и эволюции им. А.Н. Северцова РАНРоссия 119071 Москва, Ленинский просп., 33
Н. Г. Платонов
Институт проблем экологии и эволюции им. А.Н. Северцова РАНРоссия 119071 Москва, Ленинский просп., 33
И. А. Мизин
Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лаверова УрО РАНРоссия 163020 Архангельск, просп. Никольский, 20
А. И. Исаченко
ООО «Арктический Научный Центр»Россия 119333 Москва, Ленинский просп., 55/1, стр. 2
Р. Е. Лазарева
ООО «Арктический Научный Центр»Россия 119333 Москва, Ленинский просп., 55/1, стр. 2
Е. С. Иванова
Череповецкий государственный университетРоссия 162600 Вологодская обл., г. Череповец, просп. Луначарского, 5
Л. С. Ельцова
Череповецкий государственный университетРоссия 162600 Вологодская обл., г. Череповец, просп. Луначарского, 5
В. В. Рожнов
Институт проблем экологии и эволюции им. А.Н. Северцова РАН
Email: rozhnov-v-2015@yandex.ru
Россия 119071 Москва, Ленинский просп., 33
Список литературы
- Goyer R.A., Clarkson T.W. Toxic effects of metals // Casarett and Doull’s Toxicology: The Basic Science of Poisons / Edit. Klaassen C.D. New York: McGraw– Hill, 2001. P. 811–868.
- Clarkson T.W., Magos L. The toxicology of mercury and its chemical compounds // Critical Reviews in Toxicology. 2006. V. 36. P. 609–662. https://doi.org/10.1080/10408440600845619
- Scheuhammer A.M., Meyer M.W., Sandheinrich M.B., Murray M.W. Effects of Environmental Methylmercury on the health of wild birds, mammals, and fish // Ambio. 2007. V. 36(1). P. 12–18. https://doi.org/10.1579/0044-7447(2007)36[12:EOEMOT]2.0.CO;2
- Scheuhammer A., Braune B., Chan H.M. et al. Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic // Sci.Total Environ.2015. V. 509. P. 91–103. https://doi.org/10.1016/j.scitotenv.2014.05.142
- Basu N., Stamler C.J., Loua K.M., Chan H.M. An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum // Toxicology and Applied Pharmacology.2005. V. 205.P. 71–76.
- Basu N., Scheuhammer A.M., Rouvinen-Watt K. et al. Decreased N-methyl-D-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink // NeuroToxicology.2007. V. 28. P. 587–593. https://doi.org/10.1016/j.neuro.2006.12.007
- Arctic Monitoring and Assessment Programme: AMAP Assessment 2002: Heavy metals in the Arctic. AMAP 2005. Oslo, Norway. http://www.amap.no
- Schroeder W.H., Anlauf K.G., Barrie L.A. et al. Arctic springtime depletion of mercury // Nature.1998. V. 394. P. 331–332. https://doi.org/10.1038/28530
- Lindberg S.E., Brooks S., Lin C.J. et al. Formation of reactive gaseous mercury in the Arctic: evidence of oxidation of Hg to gas– phase Hg– II compounds after Arctic sunrise // Water Air Soil Pollut (Focus 1). 2001. P. 295–302. https://doi.org/10.1023/A:1013171509022
- Macdonald R.W., Harner T., Fyfe J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data // Sci. Total Environ. 2005. V. 342. P. 5–86. https://doi.org/10.1016/j.scitotenv.2004.12.059
- Красная книга Российской Федерации. Т. «Животные». 2-е изд. М.: ФГБУ «ВНИИ Экология», 2021. 1128 с.
- Letcher R.J., Bustnes J.O., Dietz R. et al. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish // Sci. Total Environ. 2010.V. 408 (15). P. 2995−3043. https://doi.org/10.1016/j.scitotenv.2009.10.038
- Lippold A., Bourgeon S., Aars J. et al. Temporal trends of persistent organic pollutants in Barents Sea polar bears (Ursus maritimus) in relation to changes in feeding habits and body condition // Environ. Sci. Technol. 2019.V. 53. P. 984−995. https://doi.org/10.1021/acs.est.8b05416
- Patyk K.A.,Duncan C., Nol P. et al. Establishing a definition of polar bear (Ursus maritimus) health: A guide to research and management activities // Sci. Total Environ. 2015.V. 514.P. 371−378. https://doi.org/10.1016/j.scitotenv.2015.02.007
- Schliebe S., Rode K., Gleason J. et al. Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall open-water period in the Southern Beaufort Sea //Polar Biol.2008.V. 31. P. 999–1010. https://doi.org/10.1007/s00300-008-0439-7
- Derocher A.E., Wiig Ø., Bangjord G. Predation of Svalbard reindeer by polar bears // Polar Biol.2000.V. 23. P. 675–678. https://doi.org/10.1007/s003000000138
- Derocher A.E., Lunn N.J., Stirling I. Polar bears in a warming climate // Integr. Comp Biol. 2004. V. 44. P. 163–176. https://doi.org/10.1093/icb/44.2.163
- Gormezano L.J., Rockwell R.F. What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay // Ecol. Evol. 2013. V. 3. P. 3509–3523. https://doi.org/10.1002/ece3.740
- Born E.W., Renzoni A., Dietz R. Total mercury in hair of polar bears (Ursus maritimus) from Greenland and Svalbard // Polar Research. 1991.V. 9(2). P. 113–120. https://doi.org/10.3402/polar.v9i2.6784
- Cardona-Marek T., Knott K.K., Meyer B.E., O’Hara T.M. Mercury concentrations in Southern Beaufort Sea polar bears: variation based on stable isotopes of carbon and nitrogen // Environ. Toxicol. Chem. 2009. V. 28(7). P. 1416–24. https://doi.org/10.1897/08-557.1
- Bechshoft T., Dyck M., Pierre K.A.S. et al. The use of hair as a proxy for total and methylmercury burdens in polar bear muscle tissue // Science of the Total Environment. 2019. V. 686. P. 1120-1128. https://doi.org/10.1016/j.scitotenv.2019.06.087
- Hobson K.A., Welch H.E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis // Mar. Ecol. Progr. Ser. 1992. V. 84. P. 9–18. https://doi.org/10.3354/meps084009
- McKinney M.A., Peacock E., Letcher R.J. Sea ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears // Environ. Sci. Technol. 2009. V. 43. P. 4334–4339. https://doi.org/10.1021/es900471g
- Иванов Е.А., Мордвинцев И.Н., Платонов Н.Г. и др. Изотопный состав крови белого медведя Ursus maritimus карско-баренцевоморской популяции // Доклады РАН. 2018. Т. 480. № 2.С. 247–249. [Ivanov E.A., Mordvintsev I.N., Platonov N.G.et al.Isotopic composition of blood of polar bears (Ursus maritimus) of the Kara-Barents Sea Population // Doklady Biological Sciences. 2018. V. 480. P. 93–96. doi: 10.1134/S0012496618030055]
- O’Connell T.C., Hedges R.E.M. Investigations into the effect of diet on modern human hair isotopic values // American Journal of Physical Anthropology. 1999. V. 108. P. 409–425.
- Tartu S., Aars J., Andersen M. et al. Choose your poison – space-use strategy influences pollutant exposure in Barents Sea polar bears // Environ. Sci. Technol. 2018. V. 52 (5). P. 3211–3221. https://doi.org/10.1021/acs.est.7b06137
- Routti H., Atwood T.C., Bechshoft T. et al. State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic // Sci. Total Environ. 2019.V. 664. P. 1063−1083. https://doi.org/10.1016/j.scitotenv.2019.02.030
- Lippold A., Aars J., Andersen M. et al. Two decades of mercury concentrations in Barents Sea polar bears (Ursus maritimus) in relation to dietary carbon, sulfur, and nitrogen // Environ. Sci. Technol. 2020. V. 54 (12). P. 7388–7397. https://dx.doi.org/10.1021/acs.est.0c01848
- Lippold A., Boltunov A., Aars J. et al. Spatial variationin mercury concentrations in polar bear (Ursus maritimus) hair from the Norwegian and Russian Arctic // Sci. Total Environ. 2022.V. 822.Art. 153572. https://doi.org/10.1016/j.scitotenv.2022.153572
- Dietz R., Riget F., Born E.W. et al. Trends in mercury in hair of Greenlandic polar bears (Ursus maritimus) during 1892–2001 // Environ.Sci. Technol.2006. V. 40 (4). P. 1120–1125. https://doi.org/10.1021/es051636z
- Lentfer J.W., Galster A. Mercury in polar bears from Alaska // Journal of Wildlife Diseases. 1987. V. 23 (2). P. 338– 341.
- St Louis V.L., Derocher A.E., Stirling I. et al. Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic // Environ. Sci. Technol. 2011. V. 45 (14). P. 5922–5928. https://doi.org/10.1021/es2000672
- Blévin P., Aars J., Andersen M.et al. Pelagic vs coastal key drivers of pollutant levels in Barents Sea polar bears with Contrasted Space-Use Strategies // Environ. Sci. Technol.2020.V. 54. P. 985–995.
- Bentzen T.W., Follmann E.H., Amstrup S.C. et al. Variation in winter diet of southern Beaufort Sea polar bears inferred from stable isotope analysis // Can. J. Zool.2007.V. 85.P. 596–608. https://doi.org/10.1139/Z07-036
- Rogers M.C., Peacock E., Simac K. et al. Diet of female polar bears in the southern Beaufort Sea of Alaska: evidence for an emerging alternative foraging strategy in response to environmental change // Polar Biol. 2015. V. 38.P. 1035–1047. https://doi.org/10.1007/s00300-015-1665-4
- Kelly B.C., Ikonomou M.G., Blair J.D. et al. Food Web-Specific Biomagnification of Persistent Organic Pollutants // Science. 2007. V. 317. P. 236−239. https://doi.org/10.1126/science.1138275
- Sonne C., Dietz R., Leifsson P.S. et al. Are liver and renal lesions in East Greenland polar bears (Ursus maritimus) associated with high mercury levels? // Environmental Health. 2007. V. 6. Art. 11. https://doi.org/10.1186/1476-069X-6-11
- Feng D., Gleason C.J., Lin P. et al. Recent changes to Arctic River discharge // Nature Communications. 2021. V. 12. Art. 6917. https://doi.org/10.1038/s41467-021-27228-1
- Dietz R., Sonne C., Basu N.et al. What are the toxicological effects of mercury in Arctic biota? // Sci.Total Environ. 2013. V. 443. P. 775–790. http://dx.doi.org/10.1016/j.scitotenv.2012.11.046
Дополнительные файлы


