The influence of endogeic earthworms on soil organic matter in a short-term field experiment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We conducted a field experiment using mesocosms during the growing season to evaluate the effects of endogeic earthworms – the invasive Eisenia tracta and Aporrectodea caliginosa, and the native E. nordenskioldi pallida – on soil organic matter content in Calcic Chernozem. We established that the vertical distribution of soil organic matter within the humus horizon depends on the earthworm species and their interactions. The highest content was observed in the variants containing the native species.

About the authors

D. P. Unru

Omsk State Pedagogical University

Author for correspondence.
Email: nilseb@omgpu.ru
Omsk, 644043, Russia

S. Yu. Kniazev

Omsk State Pedagogical University

Email: nilseb@omgpu.ru
Omsk, 644043, Russia

K. A. Babiy

Omsk State Pedagogical University

Email: nilseb@omgpu.ru
Omsk, 644043, Russia

E. V. Golovanova

Omsk State Pedagogical University

Email: nilseb@omgpu.ru
Omsk, 644043, Russia

References

  1. Рейнгард Я.Р. Деградация почв экосистем юга Западной Сибири. Польша: Лодзь, 2009. 636 с.
  2. Bobrenko I.A., Matveychik O.A., Bobrenko E.G., Popova V. Changes in humus content in forest-steppe soils of Western Siberia // IOP Conf. Ser.: Earth Environ. 2021. V. 624. № 1. Art. 012219. https://doi.org/10.1088/1755-1315/624/1/012219
  3. Prisa D. Earthworm humus for the growth of vegetable plants // International J. of Current Multidiscriplinary Studies. 2019. V. 5. P. 968–969.
  4. Bloin M., Hodson M.E., Delgado E.A. et al. A review of earthworm impact on soil function and ecosystem services // European J. of Soil Science. 2013. V. 64. P. 161–182. http://dx.doi.org/10.1111/ejss.12025
  5. Angst G., Potapov A., Joly F.-X. et al. Conceptualizing soil fauna effects on labile and stabilized soil organic matter // Nature Communications. 2024. V. 15. Art. 5005. https://doi.org/10.1038/s41467-024-49240-x.
  6. Schmidt M.W.I., Torn M.S., Abiven S. et al. Persistence of soil organic matter as an ecosystem property // Nature. 2011. V. 478. P. 49–56.
  7. Kooch Ya., Kuzyakov Ya. Earthworms for soil organic matter mineralization and carbon sequestration // Earthworms and Ecological Processes. 2024. V. 3. P. 373–394. https://doi.org/10.1007/978-3-031-64510-5_14
  8. Barbera V., Raimondi S., Egli M., Plötze M. The influence of weathering processes on labile and stable organic matter in Mediterranean volcanic soils // Geoderma. 2008. V. 143. № 1. P. 191–205. https://doi.org/10.1016/j.geoderma.2007.11.002
  9. Kalisz B., Lachacz A., Giełwanowska I., Kellmann-Sopyła W. Labile and stable carbon pools in antarctic soils of the Arctowski Region, King George Island // Sustainability. 2025. V. 17(16). Art. 7221. https://doi.org/10.3390/su17167221
  10. Ortner M., Seidel M., Diehl D., Sören T.-B. Assignment of thermogravimetric mass losses to soil organic matter, its fractions hot water–extractable and microbial biomass carbon, and organic matter-stabilizing soil mineral properties // J. of Plant Nutrition and Soil Science. 2025. V. 188. № 3. P. 334–349. https://doi.org/10.1002/jpln.202400498
  11. Yu P., Wang H., Shi W., Huang Y. Reduction in mineral-associated organic carbon reveal soil organic matter loss following grassland degradation // Land Degradation & Development. 2025. P. 1–12. https://doi.org/10.1002/ldr.70209
  12. Anwar E.K. Efektivitas cacing tanah Pheretima hupiensis, Edrellus sp. dan Lumbricus sp. dalam proses dekomposisi Bahan Organik // J. Tanah Trop. 2009. V. 14. № 2. P. 149–158. - http://dx.doi.org/10.5400/jts.2009.v14i2.149–158
  13. Villenave C., Charpentier F., Lavelle P. Effects of earthh worms on soil organic matter and nutrient dynamics following earthworm inoculation in field experimental situations // Earthworm Management in Tropical Agroecosystems. 1999. V. 6. P. 173–197.
  14. Lavelle P., Martin A. Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics // Soil Biology and Biochemistry. 1992. V. 24. № 12. P. 1491–1498. y http://dx.doi.org/10.1016/0038-0717(92)90138-N
  15. Siband P. Etude de l’évolution des sols sous culture traw ditionnelle en Haute-Casamance. Principaux résultats // m L’Agronomie Tropicale. 1972. V. 27. P. 574–591. 16.
  16. Aweto A.O., Obe O., Ayanniyi O.O. Effects of shifting and continuous cultivation of cassava (Manihot esculenta) intercropped with maize (Zea mays) on a forest g alfisol in South-Western Nigeria // J. of Agricultural c Science. 1992. V. 118. № 2. P. 195–198. . http://dx.doi.org/10.1017/S0021859600068787
  17. Bouche M.B. Strategies lombriciennes // Soil Organisms as Components of Ecosystems. Ecol. Bull. 1977. V. 25. P. 122–132.
  18. Capowiez Y., Gilbert F., Vallat A. et al. Depth distribution of soil organic matter and burrowing activity of earthworms – mesocosm study using X-ray tomography and luminophores // Biology and Fertility of Soils. 2021. V. 57. P. 337–346. https://link.springer.com/article/10.1007/s00374-020-01536-y
  19. Babiy K.A., Kniazev S.Yu., Solomatin D.V., Golovanova E.V. Influence of the invasive earthworm Eisenia nana (Lumbricidae) on the content of water-soluble forms of cations (NH+, Na+, Mg2+, Ca2+) in soil // 4 Russ. J. of Ecology. 2023. V. 54. No. 4. P. 322–330. https://doi.org/10.1134/S1067413623040033 https://doi.org/10.1134/S1067413623040033
  20. Бабий К.А., Цвирко Е.И., Князев С.Ю. Ионный состав почв под воздействием Eisenia nordenskioldi и Lumbricus rubellus в условиях микрокосмов // Российский журнал экологии экосистем. 2020. Т. 5. № 4. С. 49–61. [Babiy K.A., Tsvirko E.I., Kniazev S.Yu. Ionic composition of soils under the influence of Eisenia nordenskioldi and Lumbricus rubellus under microcosm conditions // Russ. J. of Ecosystem Ecology. 2020. V. 5. No. 4. P. 49–61.] http://dx.doi.org/10.21685/2500-0578-2020-4-5 21.
  21. Babiy K.A., Kniazev S.Yu., Abramenko A.S., Golovanova E.V. The first data regarding the effect of the exotic Eisenia ventripapillata (Oligochaeta, Lumbricidae) on the cation composition of soils in Western Siberia // Vestnik Tomskogo Gosudarstvennogo Universiteta. Biologiya. 2022. V. 60. P. 65–77. https://doi.org/10.17223/19988591/60/4 22.
  22. Golovanova E.V., Kniazev S.Yu., Karaban K. et al. First short-term study of the relationship between native and invasive earthworms in the zone of soil freezing in Western Siberia – experiments in mesocosms // Diversity. 2023. V. 15. № 2. Art. 248. http://dx.doi.org/10.3390/d15020248
  23. Ferlian O., Thakur M.P., Gonzalez A. Soil chemistry turned upside down: a meta-analysis of invasive earthworm effects on soil chemical properties // Ecology. 2020. V. 101. № 3. Art. e02936. http://dx.doi.org/10.1002/ecy.2936
  24. Huang C., González G., Hendrix P.F. Resource utilization by native and invasive earthworms and their effects on soil carbon and nitrogen dynamics in Puerto Rican soils // Forests. 2016. V. 7. Art. 277. http://dx.doi.org/10.3390/f7110277
  25. Uvarov A.V. Interand intraspecific interactions in lumbricid earthworms: Their role for earthworm performance and ecosystem functioning // Pedobiologia. 2009. V. 53. № 1. P. 1–27. http://dx.doi.org/10.1016/j.pedobi.2009.05.001 http://dx.doi.org/10.1016/j.pedobi.2009.05.001
  26. Князев С.Ю., Кислый А.А., Богомолова И.Н., Голованова Е.В. Территориальная неоднородность населения дождевых червей (Opisthopora, Lumbricidae) Омской области и факторы среды: количественная оценка связи // Сибирский экологич. журн. 2022. Т. 29. № 5. С. 550–561 [Kniazev S.Yu., Kislyi A.A., Bogomolova I.N., Golovanova E.V. Territorial heterogeneity of the earthworm population (Opisthopora, Lumbricidae) of the Omsk Region and environmental factors: a quantitative assessment of the relationship // Contemporary Problems of Ecology. 2022. V. 29. No. 5. P. 550–561] http://dx.doi.org/10.15372/SEJ20220506
  27. Голованова Е.В., Романчук Р.Р., Щербаков В.Е. и др. Распространение и численность европейских видов дождевых червей в лесах Прииртышья // Лесоведение. 2024. Т. 55. № 4. С. 349–365 [Golovanova E.V., Romanchuk R.R., Shcherbakov V.E. Distribution and abundance of european earthworm species in Irtysh forests // Russ. J. of Ecology. 2024. V. 55. № 6. P. 548–561] http://dx.doi.org/10.1134/S1067413624603063
  28. Golovanova E.V., Kniazev S.Yu., Babiy K.A. et al. Dispersal of earthworms from the Rudny Altai (Kazakhstan) into Western Siberia // Ecologica Montenegrina. 2021. V. 45. P. 48–61. http://dx.doi.org/10.37828/em.2021.45.923
  29. Perel T.S. Range and regularities in the distribution of earthworms of the USSR fauna // Laboratory of Forest Science. Moscow. Publishing House Nauka, 1979. 268 p.
  30. IUSS Working Group WRB. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS). Vienna, Austria, 2006. 236 p.
  31. Бабий К.А., Князев С.Ю., Голованова Е.В. и др. Влияние инвазивного Aporrectodea caliginosa и аборигенного Eisenia nordenskioldi pallida на содержание NH4+, K+, Na+, Mg2+, Ca2+ в полевом эксперименте в мезокосмах с лугово-чернозёмной почвой Западной Сибири // Экология. 2025. № 6. С. 467–477.
  32. Bahadori M., Tofighi H. A modified Walkley-Black method based on spectrophotometric procedure // Communications in Soil Science and Plant Analysis. 2015. V. 47. № 2. P. 213–220. https://doi.org/10.1080/00103624.2015.1118118
  33. Huang C., Wang W., Shizhong Y. et al. Role of biochar and Eisenia fetida on metal bioavailability and biochar effects on earthworm fitness // Environmental Pollution. 2020. V. 263(Pt. A). Art. 114586. http://dx.doi.org/10.1016/j.envpol.2020.114586
  34. Geraskina A. Impact of earthworms of different morpho-ecological groups on carbon accumulation in forest soils // Forest Science Issues. 2021. V. 1(4). P. 1–15. http://dx.doi.org/10.31509/2658-607x-202141g15
  35. Andriuzzi W.S., Schmidt O., Brussaard L. et al. Earthworm functional traits and interspecific interactions affect plant nitrogen acquisition and primary production // Applied Soil Ecology. 2016. V. 104. P. 148–156. http://dx.doi.org/10.1016/j.apsoil.2015.09.006
  36. Potapov A., Tiunov A., Scheu S., Pollierer M.M. Combining bulk and amino acid stable isotope analyses to quantify trophic level and basal resources of detritivores: a case study on earthworms // Oecologia. 2019. V. 189. № 2. P. 447–460. https://doi.org/10.1007/s00442-018-04335-3
  37. Capowiez Y., Marchan D.F., Decaëns Th., Bottinelli N. Let earthworms be functional – Definition of new functional groups based on their bioturbation behavior // Soil Biology and Biochemistry. 2023. V. 108. Art. 109209. https://doi.org/10.1016/j.soilbio.2023.109209
  38. Zhang W., Hendrix L.E., Shenglei F. et al. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization // Nature Communications. 2013. V. 4. № 1. Art. 2576. http://dx.doi.org/10.1038/ncomms3576
  39. Jennings B.W., Watmough S.A. The impact of invasive earthworms on soil respiration and soil carbon within temperate Hardwood forests // Ecosystems. 2016. V. 19. № 5. P. 942–954. https://link.springer.com/article/10.1007/s10021-016-9977-y
  40. Wang Y., Wu Y., Cavanagh J.E. et al. Behavior and respiration responses of the earthworm Eisenia fetida to soil arsenite pollution // Pedosphere. 2021. V. 31. № 3. P. 452–459. http://dx.doi.org/10.1016/S1002-0160(20)60082-0
  41. Golovanova E.V., Unru D.P., Babiy K.A. et al. Can earthworm invasions from Rudny Altai (Kazakhstan) in the south of Western Siberia change the amount of humus in meadow chernozem (Calcic Chernozem) soils? // Biogenic–Abiogenic Interactions in Natural and Anthropogenic Systems 2022. Springer, 2023. P. 395–405. https://doi.org/10.1007/978-3-031-40470-2_23
  42. Alban D.H., Berry E.C. Effects of earthworm invasion on morphology, carbon, and nitrogen of a forest soil // Applied Soil Ecology. 1994. V. 1. № 3. P. 243–249. https://doi.org/10.1016/0929-1393(94)90015-9
  43. James S.W. Soil, nitrogen, phosphorus, and organic matter processing by earthworms in tallgrass prairie // Ecology. 1991. V. 72. № 6. Art. 2101. http://dx.doi.org/10.2307/1941562
  44. Chernova O.V., Schepaschenko D.G., Alyabina I. Integrated approach to spatial assessment of soil organic carbon in the Russian Federation // Eurasian Soil Science. 2021. V. 54. № 3. P. 325–336. https://doi.org/10.1134/s1064229321030042

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).