The influence of endogeic earthworms on soil organic matter in a short-term field experiment
- Authors: Unru D.P.1, Kniazev S.Y.1, Babiy K.A.1, Golovanova E.V.1
-
Affiliations:
- Omsk State Pedagogical University
- Issue: No 6 (2025)
- Pages: 476-484
- Section: Articles
- URL: https://journals.rcsi.science/0367-0597/article/view/379408
- DOI: https://doi.org/10.7868/S3034614225060075
- ID: 379408
Cite item
Abstract
We conducted a field experiment using mesocosms during the growing season to evaluate the effects of endogeic earthworms – the invasive Eisenia tracta and Aporrectodea caliginosa, and the native E. nordenskioldi pallida – on soil organic matter content in Calcic Chernozem. We established that the vertical distribution of soil organic matter within the humus horizon depends on the earthworm species and their interactions. The highest content was observed in the variants containing the native species.
Keywords
About the authors
D. P. Unru
Omsk State Pedagogical University
Author for correspondence.
Email: nilseb@omgpu.ru
Omsk, 644043, Russia
S. Yu. Kniazev
Omsk State Pedagogical University
Email: nilseb@omgpu.ru
Omsk, 644043, Russia
K. A. Babiy
Omsk State Pedagogical University
Email: nilseb@omgpu.ru
Omsk, 644043, Russia
E. V. Golovanova
Omsk State Pedagogical University
Email: nilseb@omgpu.ru
Omsk, 644043, Russia
References
- Рейнгард Я.Р. Деградация почв экосистем юга Западной Сибири. Польша: Лодзь, 2009. 636 с.
- Bobrenko I.A., Matveychik O.A., Bobrenko E.G., Popova V. Changes in humus content in forest-steppe soils of Western Siberia // IOP Conf. Ser.: Earth Environ. 2021. V. 624. № 1. Art. 012219. https://doi.org/10.1088/1755-1315/624/1/012219
- Prisa D. Earthworm humus for the growth of vegetable plants // International J. of Current Multidiscriplinary Studies. 2019. V. 5. P. 968–969.
- Bloin M., Hodson M.E., Delgado E.A. et al. A review of earthworm impact on soil function and ecosystem services // European J. of Soil Science. 2013. V. 64. P. 161–182. http://dx.doi.org/10.1111/ejss.12025
- Angst G., Potapov A., Joly F.-X. et al. Conceptualizing soil fauna effects on labile and stabilized soil organic matter // Nature Communications. 2024. V. 15. Art. 5005. https://doi.org/10.1038/s41467-024-49240-x.
- Schmidt M.W.I., Torn M.S., Abiven S. et al. Persistence of soil organic matter as an ecosystem property // Nature. 2011. V. 478. P. 49–56.
- Kooch Ya., Kuzyakov Ya. Earthworms for soil organic matter mineralization and carbon sequestration // Earthworms and Ecological Processes. 2024. V. 3. P. 373–394. https://doi.org/10.1007/978-3-031-64510-5_14
- Barbera V., Raimondi S., Egli M., Plötze M. The influence of weathering processes on labile and stable organic matter in Mediterranean volcanic soils // Geoderma. 2008. V. 143. № 1. P. 191–205. https://doi.org/10.1016/j.geoderma.2007.11.002
- Kalisz B., Lachacz A., Giełwanowska I., Kellmann-Sopyła W. Labile and stable carbon pools in antarctic soils of the Arctowski Region, King George Island // Sustainability. 2025. V. 17(16). Art. 7221. https://doi.org/10.3390/su17167221
- Ortner M., Seidel M., Diehl D., Sören T.-B. Assignment of thermogravimetric mass losses to soil organic matter, its fractions hot water–extractable and microbial biomass carbon, and organic matter-stabilizing soil mineral properties // J. of Plant Nutrition and Soil Science. 2025. V. 188. № 3. P. 334–349. https://doi.org/10.1002/jpln.202400498
- Yu P., Wang H., Shi W., Huang Y. Reduction in mineral-associated organic carbon reveal soil organic matter loss following grassland degradation // Land Degradation & Development. 2025. P. 1–12. https://doi.org/10.1002/ldr.70209
- Anwar E.K. Efektivitas cacing tanah Pheretima hupiensis, Edrellus sp. dan Lumbricus sp. dalam proses dekomposisi Bahan Organik // J. Tanah Trop. 2009. V. 14. № 2. P. 149–158. - http://dx.doi.org/10.5400/jts.2009.v14i2.149–158
- Villenave C., Charpentier F., Lavelle P. Effects of earthh worms on soil organic matter and nutrient dynamics following earthworm inoculation in field experimental situations // Earthworm Management in Tropical Agroecosystems. 1999. V. 6. P. 173–197.
- Lavelle P., Martin A. Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics // Soil Biology and Biochemistry. 1992. V. 24. № 12. P. 1491–1498. y http://dx.doi.org/10.1016/0038-0717(92)90138-N
- Siband P. Etude de l’évolution des sols sous culture traw ditionnelle en Haute-Casamance. Principaux résultats // m L’Agronomie Tropicale. 1972. V. 27. P. 574–591. 16.
- Aweto A.O., Obe O., Ayanniyi O.O. Effects of shifting and continuous cultivation of cassava (Manihot esculenta) intercropped with maize (Zea mays) on a forest g alfisol in South-Western Nigeria // J. of Agricultural c Science. 1992. V. 118. № 2. P. 195–198. . http://dx.doi.org/10.1017/S0021859600068787
- Bouche M.B. Strategies lombriciennes // Soil Organisms as Components of Ecosystems. Ecol. Bull. 1977. V. 25. P. 122–132.
- Capowiez Y., Gilbert F., Vallat A. et al. Depth distribution of soil organic matter and burrowing activity of earthworms – mesocosm study using X-ray tomography and luminophores // Biology and Fertility of Soils. 2021. V. 57. P. 337–346. https://link.springer.com/article/10.1007/s00374-020-01536-y
- Babiy K.A., Kniazev S.Yu., Solomatin D.V., Golovanova E.V. Influence of the invasive earthworm Eisenia nana (Lumbricidae) on the content of water-soluble forms of cations (NH+, Na+, Mg2+, Ca2+) in soil // 4 Russ. J. of Ecology. 2023. V. 54. No. 4. P. 322–330. https://doi.org/10.1134/S1067413623040033 https://doi.org/10.1134/S1067413623040033
- Бабий К.А., Цвирко Е.И., Князев С.Ю. Ионный состав почв под воздействием Eisenia nordenskioldi и Lumbricus rubellus в условиях микрокосмов // Российский журнал экологии экосистем. 2020. Т. 5. № 4. С. 49–61. [Babiy K.A., Tsvirko E.I., Kniazev S.Yu. Ionic composition of soils under the influence of Eisenia nordenskioldi and Lumbricus rubellus under microcosm conditions // Russ. J. of Ecosystem Ecology. 2020. V. 5. No. 4. P. 49–61.] http://dx.doi.org/10.21685/2500-0578-2020-4-5 21.
- Babiy K.A., Kniazev S.Yu., Abramenko A.S., Golovanova E.V. The first data regarding the effect of the exotic Eisenia ventripapillata (Oligochaeta, Lumbricidae) on the cation composition of soils in Western Siberia // Vestnik Tomskogo Gosudarstvennogo Universiteta. Biologiya. 2022. V. 60. P. 65–77. https://doi.org/10.17223/19988591/60/4 22.
- Golovanova E.V., Kniazev S.Yu., Karaban K. et al. First short-term study of the relationship between native and invasive earthworms in the zone of soil freezing in Western Siberia – experiments in mesocosms // Diversity. 2023. V. 15. № 2. Art. 248. http://dx.doi.org/10.3390/d15020248
- Ferlian O., Thakur M.P., Gonzalez A. Soil chemistry turned upside down: a meta-analysis of invasive earthworm effects on soil chemical properties // Ecology. 2020. V. 101. № 3. Art. e02936. http://dx.doi.org/10.1002/ecy.2936
- Huang C., González G., Hendrix P.F. Resource utilization by native and invasive earthworms and their effects on soil carbon and nitrogen dynamics in Puerto Rican soils // Forests. 2016. V. 7. Art. 277. http://dx.doi.org/10.3390/f7110277
- Uvarov A.V. Interand intraspecific interactions in lumbricid earthworms: Their role for earthworm performance and ecosystem functioning // Pedobiologia. 2009. V. 53. № 1. P. 1–27. http://dx.doi.org/10.1016/j.pedobi.2009.05.001 http://dx.doi.org/10.1016/j.pedobi.2009.05.001
- Князев С.Ю., Кислый А.А., Богомолова И.Н., Голованова Е.В. Территориальная неоднородность населения дождевых червей (Opisthopora, Lumbricidae) Омской области и факторы среды: количественная оценка связи // Сибирский экологич. журн. 2022. Т. 29. № 5. С. 550–561 [Kniazev S.Yu., Kislyi A.A., Bogomolova I.N., Golovanova E.V. Territorial heterogeneity of the earthworm population (Opisthopora, Lumbricidae) of the Omsk Region and environmental factors: a quantitative assessment of the relationship // Contemporary Problems of Ecology. 2022. V. 29. No. 5. P. 550–561] http://dx.doi.org/10.15372/SEJ20220506
- Голованова Е.В., Романчук Р.Р., Щербаков В.Е. и др. Распространение и численность европейских видов дождевых червей в лесах Прииртышья // Лесоведение. 2024. Т. 55. № 4. С. 349–365 [Golovanova E.V., Romanchuk R.R., Shcherbakov V.E. Distribution and abundance of european earthworm species in Irtysh forests // Russ. J. of Ecology. 2024. V. 55. № 6. P. 548–561] http://dx.doi.org/10.1134/S1067413624603063
- Golovanova E.V., Kniazev S.Yu., Babiy K.A. et al. Dispersal of earthworms from the Rudny Altai (Kazakhstan) into Western Siberia // Ecologica Montenegrina. 2021. V. 45. P. 48–61. http://dx.doi.org/10.37828/em.2021.45.923
- Perel T.S. Range and regularities in the distribution of earthworms of the USSR fauna // Laboratory of Forest Science. Moscow. Publishing House Nauka, 1979. 268 p.
- IUSS Working Group WRB. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS). Vienna, Austria, 2006. 236 p.
- Бабий К.А., Князев С.Ю., Голованова Е.В. и др. Влияние инвазивного Aporrectodea caliginosa и аборигенного Eisenia nordenskioldi pallida на содержание NH4+, K+, Na+, Mg2+, Ca2+ в полевом эксперименте в мезокосмах с лугово-чернозёмной почвой Западной Сибири // Экология. 2025. № 6. С. 467–477.
- Bahadori M., Tofighi H. A modified Walkley-Black method based on spectrophotometric procedure // Communications in Soil Science and Plant Analysis. 2015. V. 47. № 2. P. 213–220. https://doi.org/10.1080/00103624.2015.1118118
- Huang C., Wang W., Shizhong Y. et al. Role of biochar and Eisenia fetida on metal bioavailability and biochar effects on earthworm fitness // Environmental Pollution. 2020. V. 263(Pt. A). Art. 114586. http://dx.doi.org/10.1016/j.envpol.2020.114586
- Geraskina A. Impact of earthworms of different morpho-ecological groups on carbon accumulation in forest soils // Forest Science Issues. 2021. V. 1(4). P. 1–15. http://dx.doi.org/10.31509/2658-607x-202141g15
- Andriuzzi W.S., Schmidt O., Brussaard L. et al. Earthworm functional traits and interspecific interactions affect plant nitrogen acquisition and primary production // Applied Soil Ecology. 2016. V. 104. P. 148–156. http://dx.doi.org/10.1016/j.apsoil.2015.09.006
- Potapov A., Tiunov A., Scheu S., Pollierer M.M. Combining bulk and amino acid stable isotope analyses to quantify trophic level and basal resources of detritivores: a case study on earthworms // Oecologia. 2019. V. 189. № 2. P. 447–460. https://doi.org/10.1007/s00442-018-04335-3
- Capowiez Y., Marchan D.F., Decaëns Th., Bottinelli N. Let earthworms be functional – Definition of new functional groups based on their bioturbation behavior // Soil Biology and Biochemistry. 2023. V. 108. Art. 109209. https://doi.org/10.1016/j.soilbio.2023.109209
- Zhang W., Hendrix L.E., Shenglei F. et al. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization // Nature Communications. 2013. V. 4. № 1. Art. 2576. http://dx.doi.org/10.1038/ncomms3576
- Jennings B.W., Watmough S.A. The impact of invasive earthworms on soil respiration and soil carbon within temperate Hardwood forests // Ecosystems. 2016. V. 19. № 5. P. 942–954. https://link.springer.com/article/10.1007/s10021-016-9977-y
- Wang Y., Wu Y., Cavanagh J.E. et al. Behavior and respiration responses of the earthworm Eisenia fetida to soil arsenite pollution // Pedosphere. 2021. V. 31. № 3. P. 452–459. http://dx.doi.org/10.1016/S1002-0160(20)60082-0
- Golovanova E.V., Unru D.P., Babiy K.A. et al. Can earthworm invasions from Rudny Altai (Kazakhstan) in the south of Western Siberia change the amount of humus in meadow chernozem (Calcic Chernozem) soils? // Biogenic–Abiogenic Interactions in Natural and Anthropogenic Systems 2022. Springer, 2023. P. 395–405. https://doi.org/10.1007/978-3-031-40470-2_23
- Alban D.H., Berry E.C. Effects of earthworm invasion on morphology, carbon, and nitrogen of a forest soil // Applied Soil Ecology. 1994. V. 1. № 3. P. 243–249. https://doi.org/10.1016/0929-1393(94)90015-9
- James S.W. Soil, nitrogen, phosphorus, and organic matter processing by earthworms in tallgrass prairie // Ecology. 1991. V. 72. № 6. Art. 2101. http://dx.doi.org/10.2307/1941562
- Chernova O.V., Schepaschenko D.G., Alyabina I. Integrated approach to spatial assessment of soil organic carbon in the Russian Federation // Eurasian Soil Science. 2021. V. 54. № 3. P. 325–336. https://doi.org/10.1134/s1064229321030042
Supplementary files


