Comparative mesocosm study on the impact of invasive Aporrectodea caliginosa and native Eisenia nordenskioldi pallida on water-soluble cation (NH4+, K+, Na+, Mg2+, Ca2+) content in Calcic Chernozems of Western Siberia: a field experiment in mesocosms
- Authors: Babiy K.A.1, Kniazev S.Y.1, Golovanova E.V.1, Solomatin D.V.1
-
Affiliations:
- Omsk State Pedagogical University
- Issue: No 6 (2025)
- Pages: 465-475
- Section: Articles
- URL: https://journals.rcsi.science/0367-0597/article/view/379407
- DOI: https://doi.org/10.7868/S3034614225060064
- ID: 379407
Cite item
Abstract
About the authors
K. A. Babiy
Omsk State Pedagogical University
Email: labinvert@omgpu.ru
Omsk, 644043 Russia
S. Yu. Kniazev
Omsk State Pedagogical University
Email: labinvert@omgpu.ru
Omsk, 644043 Russia
E. V. Golovanova
Omsk State Pedagogical University
Email: labinvert@omgpu.ru
Omsk, 644043 Russia
D. V. Solomatin
Omsk State Pedagogical University
Email: labinvert@omgpu.ru
Omsk, 644043 Russia
References
- Díaz S., Settele J., Brondízio E.S. et al. Pervasive humandriven decline of life on Earth points to the need for transformative change // Science. 2019. V. 366. Art. 3100. https://doi.org/10.1126/science.aax3100
- Hendrix P.F., Callaham M.A., Drake J.M. et al. Pandora’s box contained bait: the global problem of introduced earthworms // Ann. Rev. Ecol. Evol. Syst. 2008. V. 39. P. 593–613. https://doi.org/10.1146/annurev.ecolsys.39.110707.173426
- Frelich L.E., Blossey B., Cameron E.K. et al. Sideswiped: ecological cascades emanating from earthworm invasions // Front. Ecol. Environ. 2019. V. 17. P. 502–510. https://doi.org/10.1002/fee.2099
- Ferlian O., Thakur M.P., Gonzalez A . et al. Soil chemistry turned upside down: A meta-analysis of invasive earthworm effects on soil chemical properties // Ecology. 2020. V. 101. Art. e02936. https://doi.org/10.1002/ecy.2936
- Richardson J.B., Johnston M.R., Herrick B.M. Invasive earthworms Amynthas tokioensis and Amynthas agrestis alter macronutrients (Ca, Mg, K, P) in field and laboratory forest soils // Pedobiologia. 2022. V. 91–92. Art. 15080 4. https://doi.org/10.1016/j.pedobi.2022.15080 4
- Van Groenigen J., Lubbers I., Vos H. et al. Earthworms increase plant production: a meta-analysis // Sci. Rep. 2014. V. 4. Art. 6365. https://doi.org/10.1038/srep06365
- Lang B., Betancur-Corredor B., Russell D.J. Earthworms increase mineral soil nitrogen content – a meta-analysis // Soil Organisms. 2023. V. 95. P. 1–16. https://doi.org/10.25674/so95iss1id308 https://doi.org/10.25674/so95iss1id308
- Eisenhauer N., Partsch S., Parkinson D., Scheu S. Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation // Soil Biol. Biochem. 2007. V. 39. P. 1099–1110. https://doi.org/10.1016/j.soilbio.2006.12.019
- Hodson M.E., Brailey-Jones P., Burn W.L. et al. Enhanced plant growth in the presence of earthworms correlates with changes in soil microbiota but not nutrient availability // Geoderma. 2023. V. 433. Art. 116426. https://doi.org/10.1016/j.geoderma.2023.116426
- Hemkemeyer M., Schwalb S.A., Heinze S. et al. Functions of elements in soil microorganisms // Microbiol. Res. 2021. V. 252. Art. 126832. https://doi.org/10.1016/j.micres.2021.126832
- Jamroz E., Bekier J., Medynska-Juraszek A. et al. The contribution of water extractable forms of plant nutrients to evaluate MSW compost maturity: a case study // Sci. Rep. 2020. V. 10. Art. 12842. https://doi.org/10.1038/s41598-020-69860-9
- Бабий К.А., Князев С.Ю., Соломатин Д.В., Голованова Е.В. Влияние инвазивного дождевого червя Eisenia nana (Lumbricidae) на содержание водорастворимых форм катионов (NH+, K+, Na+, Mg2+, 4 Ca2+) в почве // Экология. 2023. № 4. С. 302–310 [Babiy K.A., Kniazev S.Y., Solomatin D., Golovanova E.V. Influence of the Invasive Earthworm Eisenia nana (Lumbricidae) on the Content of Water-Soluble Forms of Cations (NH+, K+, Na+, Mg2+, Ca2+) in Soil // 4 Russ. J. of Ecology. 2023. V. 54. P. 322–330]. https://doi.org/10.1134/S1067413623040033
- Resner K., Yoo K., Sebestyen S.D. et al. Invasive earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern hardwood forest // Ecosystems. 2015. V. 18. P. 89–102. https://doi.org/10.1007/s10021-014-9814-0
- Felten D., Emmerling C. Earthworm burrowing behaviour in 2D terraria with singleand multi-species assemblages // Biol. Fertil. Soils. 2009. V. 45. P. 789–797. https://doi.org/10.1007/s00374-009-0393-8
- Le Couteulx A., Wolf C., Hallaire V., Peres G. Burrowing and casting activities of three endogeic earthworm species affected by organic matter location // Pedobiologia. 2015. V. 58. P. 97–103. https://doi.org/10.1016/j.pedobi.2015.04.004
- Bottinelli N., Jouquet P., Minh T. et al. Mid-infrared spectroscopy to trace biogeochemical changes of earthworm casts during ageing under field conditions // Geoderma. 2021. V. 383. Art. 114891. https://doi.org/10.1016/j.geoderma.2020.114811
- T17. Tiunov A.V., Hale C.M., Holdsworth H.M., Vsevolodo- communities and soil chemistry // Soil Biol. Biochem.va-Perel T.S. Invasion patterns of Lumbricidae into 2020. V. 149. Art. 107955.
- Vsevolodova-Perel T.S., Leirikh A.N. Distribution and ecology of the earthworm Eisenia nordenskioldi pallida (Oligochaeta, Lumbricidae) dominant in southern Siberia and the Russian Far East // Entomol. Rev. 2014. V. 94. P. 479–485. https://doi.org/10.1134/S00138738140 40034
- Kniazev S.Y., Kislyi A.A., Bogomolova I.N., Golovanova E.V. Territorial heterogeneity of the earthworm population (Opisthopora, Lumbricidae) of Omsk oblast and environmental factors: A quantitative assessment of the relationship // Contemp. Probl. Ecol. 2022. V. 15. P. 484–493. https://doi.org/10.1134/S1995425522050079
- IUSS Working Group WRB. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS). Vienna, Austria, 2006. 236 p.
- Lê S., Josse J., Husson F. FactoMineR: An R package for multivariate analysis // J. Stat. Software. 2008. V. 25. P. 1–18. https://doi.org/10.18637/jss.v025.i01
- Булыгина О.Н., Разуваев В.Н., Александрова Т.М. Описание массива данных суточной температуры воздуха и количества осадков на метеорологиче- ских станциях России и бывшего СССР (tttr). Свидетельство о государственной регистрации базы данных № 2014620942. URL: http://aisori-m.meteo. ru/waisori/select.xhtml (Дата обращения 04.07.2025)
- Mudrák O., Frouz J. Earthworms increase plant biomass more in soil with no earthworm legacy than in earthworm-mediated soil, and favour late successional species in competition // Funct. Ecol. 2018. V. 32. P. 626–635. https://doi.org/10.1111/1365-2435.12999
- Babiy K.A., Kniazev S.Yu., Abramenko A.S., Golovanova E.V. The first data regarding the effect of the exotic Eisenia ventripapillata (Oligochaeta, Lumbricidae) on the cation composition of soils in Western Siberia // Vestn. Tomsk. Gos. Univ. Biol. 2022. V. 60. P. 65–77. https://doi.org/10.17223/19988591/60/4
- Medina-Sauza R.M., Álvarez-Jiménez M., Delhal A. et al. Earthworms building up soil microbiota, a review //Front. Environ. Sci. 2019. V. 7. Art. 81. https://doi.org/10.3389/fenvs.2019.00081
- Price-Christenson G.J., Johnston M.R., Herrick B.M., Yannarell A.C. Influence of invasive earthworms (Amynthas spp.) on Wisconsin forest soil microbial communities and soil chemistry // Soil Biol. Biochem. 2020. V. 149. Art. 107955. https://doi.org/10.1016/j.soilbio.2020.107955
- Marichal R., Martinez A.F., Praxedes C. et al. Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc // Appl. Soil Ecol. 2010. V. 46. P. 443–449. https://doi.org/10.1016/j.apsoil.2010.09.001 https://doi.org/10.1016/j.apsoil.2010.09.001
- Kim Y.-N., Robinson B., Boyer S. et al. Interactions of native and introduced earthworms with soils and plant rhizospheres in production landscapes of New Zealand // Appl. Soil Ecol. 2015. V. 96. P. 141–150. https://doi.org/10.1016/j.pedobi.2006.09.001
- Pulleman M.M., Six J., Uyl A. et al. Earthworms and management affect organic matter incorporation and microaggregate formation in agriculture soils // Appl. Soil Ecol. 2005. V. 29. P. 1–15. https://doi.org/10.1016/j.apsoil.2004.10.003
- Babiy K.A., Kniazev S.Yu., Golovanova E.V. et al. What determines ion content of Lumbricid casts: soil type, species, or ecological group? // Pol. J. Ecol. 2021. V. 69. P. 96–110. https://doi.org/10.3161/15052249PJE2021.69.2.003
- Le Mer G., Bottinelli N., Dignac M.F. et al. Exploring the control of earthworm cast macroand micro-scale features on soil organic carbon mineralization across species and ecological categories // Geoderma. 2022. V. 427. Art. 116151. https://doi.org/10.1016/j.geoderma.2022.116151
- Canti M.G., Piearce T.G. Morphology and dynamics of calcium carbonate granules produced by different earthworm species // Pedobiologia. 2003. V. 47. P. 511–521. https://doi.org/10.1078/0031-4056-00221
- Lee K., Foster R. Soil fauna and soil structure // Aust. J. of Soil Res. 1991. V. 29. P. 745–775. https://doi.org/10.1071/SR9910745
- Zorn M.I., Van Gestel C.A.M., Eijsackers H. The effect of two endogeic earthworm species on zinc distribution and availability in artificial soil columns // Soil Biol. Biochem. 2005. V. 37. P. 917–925. https://doi.org/10.1016/j.soilbio.2004.10.012
- Capowiez Y., Gilbert F., Vallat A. et al. Depth distribution of soil organic matter and burrowing activity of earthworms – mesocosm study using X-ray tomography and luminophores // Biol. Fertil. Soils. 2021. V. 57. P. 337–346. https://doi.org/10.1007/s00374-020-01536-y
- Pham Q.V., Nguyen T.T., Lam D.H. et al. Using morpho-anatomical traits to predict the effect of earthworms on soil water infiltration // Geoderma. 2023. V. 429. Art. 116245. https://doi.org/10.1016/j.geoderma.2022.116245
Supplementary files


