On the accumulation of heavy metals and arsenic in the feathers of the rock pigeon (Columba livia var. urbana) in different districts of Moscow

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We analyzed the concentrations of 9 ions related to heavy metals (Cr, Mn, Fe, Ni, Cu, Zn, Sr, Ba, Pb and metalloid As) (HM) in the feathers of pigeons captured in four districts of Moscow (VDNKh, Vykhino, Izmailovo, Orekhovo). In addition, the features of HM accumulation in the black and gray parts of the feather in a particular bird were evaluated. Significant differences in the concentration of HM were found between locations in Moscow, which indicates a spatial heterogeneity of pollution. The analysis showed that the concentrations of all HM were significantly higher in the black parts of the feathers than in the gray ones. This confirms the chelating role of melanin, which accumulates in melanosomes. It has been shown that the shape and number of melanosomes also differ in the black and gray parts of the feather (in gray, the ratio of rod-shaped and rounded melanosomes is 1 : 3, and in black – 5 : 1). The results confirm the possibility of using pigeon feathers for biomonitoring of HM and emphasize the critical importance of taking into account the type of pigmentation of the feather when interpreting pollution data.

About the authors

A. V. Surov

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: surov@sevin.ru
Moscow, 119071, Russia

E. A. Katsman

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: surov@sevin.ru
Moscow, 119071, Russia

V. V. Belenkova

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: surov@sevin.ru
Moscow, 119071, Russia

R. M. Khatsaeva

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: surov@sevin.ru
Moscow, 119071, Russia

A. A. Mosalov

Moscow Pedagogical State University

Email: surov@sevin.ru
Moscow, 119435 Russia

N. Y. Feoktistova

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: surov@sevin.ru
Moscow, 119071, Russia

References

  1. Okuku E., Peter H. Choose of heavy metals pollution biomonitors: a critic of the method that uses sediments total metals concentration as the benchmark // International J. of Environmental Research. 2012. V. 6. № 1. P. 313–322.
  2. Доклад о состоянии окружающей среды в г. Москве в 2024 году. URL: https://www.mos.ru/upload/ content/files/ce91e7d457ac339d0b3ceb1fd881298e/ DokladosostoniiokryjausheisredivgorodeMokvev- 2024gody.pdf.
  3. Dauwe T., Janssens E., Kempenaers B. et al. The effect of heavy metal exposure on egg size, eggshell thickness and the number of spermatozoa in blue tit Parus caeruleus eggs // Environmental Pollution. 2004. V. 129. № 1. P. 125–129.
  4. Бельский Е.А., Ляхов А.Г. Изменчивость состояния особей мухоловки-пеструшки (Ficedula hypoleuca), гнездящихся в окрестностях Cреднеуральского медеплавильного завода // Экология. 2024. № 6. C. 434–445. doi: 10.31857/S0367059724060047
  5. Snoeijs T., Dauwe T., Pinxten R. et al. Heavy metal exposure affects the humoral immune response in a free-living small songbird, the great tit (Parus major) // Archives of Environmental Contamination and Toxicology. 2004. V. 46. № 3. P. 399–404.
  6. Gangoso L., Alvarez-Lloret P., Rodríguez-Navarro A.B. et al. Long-term effects of lead poisoning on bone mineralization in vultures exposed to ammunition sources // Environmental Pollution. 2009. V. 157. № 2. P. 569–574.
  7. Nam D.-H., Lee D.-P. Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea // Science of the Total Environment. 2006. V. 357. № 1–3. P. 288–295.
  8. Добровольская Е.В. Тяжелые металлы в оперении птиц как природная метка // Современные проблемы природопользования, охотоведения и звероводства. Киров: ГНУ ВНИИОЗ РАСХН, 2007. C. 122–124.
  9. Омарова А.С., Алибаева Б.Н., Резникова М., Сим Д. Голуби как биоиндикаторы загрязнения районов г. Алматы // Успехи современного естествознания. 2011. № 5. С. 119–121.
  10. Обухова Н.Ю. Городские голуби: полиморфизм и стратегии выживания // Природа. 2016. № 9. С. 42–50.
  11. D´Alba L. Melanosome origins, diversity and functional relevance across animals // Melanins: Functions, biotechnological production, and applications. Ed. Gosset E.G. Springer, Cham, 2023. P. 45–66.
  12. Jeon D.-J., Paik S., Ji S. et al. Melanin-based structural coloration of birds and its biomimetic applications // Applied Microscopy. 2021. V. 51, № 1. Art. 14.
  13. Larsson L., Sjödin B., Karlsson J. Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 years // Acta Physiol Scand. 1978. V. 103. № 1. P. 31–39. ol Scand. 1978. V. 103. № 1. P. 31–39.
  14. Denneman W., Douben P.E. Trace metals in primary feathers of the barn owl (Tyto alba guttatus) in the Netherlands // Environmental Pollution. 1993. V. 82. № 3. P. 301–310.
  15. Braune B.M., Gaskin D.E. A mercury budget for the Bonaparte’s Gull during Autumn Moult // Ornis Scandinavica. 1987. V. 18. № 4. P. 244–250.
  16. Chatelain M., Pessato A., Frantz A. et al. Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon // Oikos 2017. V. 126. № 11. P. 1542–1553.
  17. Tejedor M., Gonzalez M. Comparison between lead levels in blood and bone tissue of rock doves (Columba livia) treated with lead acetate or exposed to the environment of Alcala de Henares // Bulletin Environ. Contam.Toxicol. 1992. V. 48. № 6. P. 835–842.
  18. Adout A., Hawlena D., Maman R. et al. Determination of trace elements in pigeon and raven feathers by ICPMS // International J. of Mass Spectrometry. 2007. V. 267. № 1–3. P. 109–116.
  19. Hoff B.C., Antoniosi F.N. Use of feathers of feral pigeons (Columba livia) as a technique for metal quantification and environmental monitoring // Environmental Monitoring and Assessment. 2011. V. 179. P. 457–467.
  20. Ceyca-Contreras J.P., Cortés-Gutiérrez E.I., García- Salas J.A. et al. Evaluation of the genotoxic effect of heavy metals in pigeons from urban and rural habitat in Monterrey, Mexico, using the chromatin dispersion assay // Biomarkers. 2020. V. 25. № 8. P. 670–676.
  21. Frantz A., Pottier M.-A., Karimi B. et al. Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale // Environmental Pollution. 2012. V. 168. P. 23–28.
  22. Elabidi A., Fekhaoui M., Ghouli A. et al. Use of pigeons as bioindicators of air pollution from heavy metals at Rabat-Salé (Morocco) // Avocetta. 2010. V. 34. P. 29–34.
  23. Лебедева Н. Экотоксикология и биогеохимия географических популяций птиц. М.: «Наука/Интерпериодика», 1999. 199 с.
  24. Тюлькова Е.Г. Влияние тяжелых металлов, содержащихся в костной ткани, на формирование параметров яиц сизого голубя в крупных промышленных центрах (на примере города Гомеля) // Веснік Мазырскага дзяржаўнага педагагічнага ўніверсітэта імя ІП Шамякіна. 2007. V. 2. № 17. P. 53–58.
  25. Markowski M., Kaliński A., Skwarska J. et al. Avian feathers as bioindicators of the exposure to heavy metal contamination of food // Bulletin of Environmental Contamination and Toxicology. 2013. V. 91. № 3. P. 302–305.
  26. P B.r i3d0e2ll–i 3M0.5G.., Crippa P.R. Theoretical analysis of the adsorption of metal ions to the surface of melanin particles // Adsorption 2008. V. 14. № 1. P. 101–109.
  27. Chatelain M., Gasparini J., Frantz A. Do trace metals select for darker birds in urban areas? An experimental exposure to lead and zinc // Global Change Biology. 2016. V. 22. № 7. P. 2380–2391.
  28. Kettlewell H.B. A resume of investigations on the evolution of melanism in the Lepidoptera // Proceedings of the Royal Society of London. Series В: Biological Sciences. 1956. V. 145. № 920. P. 297–303.
  29. Majerus M.E. Industrial melanism in the peppered moth, Biston betularia: an excellent teaching example of Darwinian evolution in action // Evolution: Education and Outreach. 2009. V. 2. № 1. P. 63–74.
  30. Обухова Н.Ю. Динамика морф сбалансированного полиморфизма у сизых голубей (Columba livia) г. Москвы // Генетика. 2011. Т. 47. № 1. С. 95–102.
  31. Обухова Н.Ю., Креславский А.Г. Адаптивные стратегии сизых голубей при полиморфизме // Изучение птиц СССР, их охрана и рациональное использование. 1986. Т. 2. С. 118–119.
  32. Larsson B., Tjalve H. Studies on the mechanism of drug-binding to melanin // Biochem. Pharmacol. 1978. V. 28. P. 1181–1187.
  33. Liu Y., Hong L., Kempf V. et al. Ion-exchange and adsoption of Fe(III) by Sepia melanin // Pigment Cell Res. 2004. V. 17. P. 262–269.
  34. Bridelli M., Crippa P. Theoretical analysis of the adsorption of metal ions to the surface of melanin particles // Adsorption. 2008. V. 14. P. 101–109.
  35. Niecke M., Rothlaender S., Roulin A. Why do melanin ornaments signal individual quality? Insights from metal element analysis of barn owl feathers // Oecologia. 2003. V. 137. P. 153–158.
  36. Obukhova N. Polymorphism and phene geography of the blue rock pigeon in Europe // Russ. J. Genet. 2007. V. 43. P. 492–501.
  37. Jacquin L., Reґcapet C., Preґvot-Julliard A. et al. A potential role for parasites in the maintenance of color polymorphism in urban birds // Oecologia. 2013. V. 173. P. 1089–1099.
  38. Chatelain M., Gasparini J., Frantz A. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia) // Ecotoxicology. 2016. V. 25. № 3. P. 521–529.
  39. Jacquin L., Lenouvel P., Haussy C. et al. Melanin-based coloration is related to parasite intensity and cellular immune response in an urban free living bird: the feral pigeon Columba livia // J. Avian Biol. 2011. V. 42. № 1. P. 11–15.
  40. Broom M., Ruxton G.D. You can run or you can hide: optimal strategies for cryptic prey against pursuit predators // Behav. Ecol. 2005. V. 16. № 3. P. 534–540.
  41. Hof A.E., Campagne P., Rigden D. et al. The industrial melanism mutation in British peppered moths is a transposable element // Nature. 2016. V. 534. P. 102–105.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).