Assessment of copper toxicity to sunflower under monometallic soil contamination conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ecotoxicological studies on metal toxicity are commonly conducted using artificially contaminated soils, whereas investigations of naturally or industrially contaminated soils remain limited. Industrially contaminated soils often contain elevated concentrations of multiple elements, complicating the interpretation of toxic effects. This underscores the exceptional value of sites with monometallic pollution. One such site is the Kargaly copper mining district in the Orenburg Region of the Russian Federation. This study assessed copper phytotoxicity to sunflower (Helianthus annuus L.) grown under field conditions in soils historically contaminated by copper mining during the 18th–19th centuries. Total copper content in the studied soils reached upto 10,000 mg/kg, while the content of other elements remained close to the background levels, confirming the monometallic nature of the pollution. The effective concentrations of copper causing 25% and 50% reductions (EC 25 and EC 50 ) in sunflower shoot growth were 9.8 and 12 mg/kg, respectively. Corresponding EC 25 and EC 50 values for total soil copper were 706 and 929 mg/kg, respectively.

About the authors

F. Tapia-Pizarro

Department of Landscape Design and Sustainable Ecosystems, Peoples Friendship University of Russia (RUDN University)

Email: nrcki@nrcki.ru
Moscow 117198, Russia

E. A. Dovletyarova

Department of Landscape Design and Sustainable Ecosystems, Peoples Friendship University of Russia (RUDN University)

Email: nrcki@nrcki.ru
Moscow 117198, Russia

D. G. Polyakov

Institute of Steppe, Ural Branch of the Russian Academy of Sciences

Email: nrcki@nrcki.ru
Orenburg 460000, Russia

S. V. Bogdanov

Institute of Steppe, Ural Branch of the Russian Academy of Sciences

Email: nrcki@nrcki.ru
Orenburg 460000, Russia

N. A. Terekhova

Department of Biology and Soil Science, Faculty of Chemistry and Biology, Orenburg State University

Email: nrcki@nrcki.ru
Orenburg 460018, Russia

T. V. Fedorov

Mining Institute, Ural Branch of the Russian Academy of Sciences

Email: nrcki@nrcki.ru
Perm 614007, Russia

M. M. Karpukhin

Faculty of Geology, Lomonosov Moscow State University

Email: nrcki@nrcki.ru
Moscow 119991, Russia

Y. A. Krutyakov

National Research Centre "Kurchatov Institute"; Laboratory of Functional Materials for Agriculture, Department of Chemistry, Lomonosov Moscow State University

Email: nrcki@nrcki.ru
Moscow 123182, Russia; Moscow 119991, Russia

C. Yanez

Instituto de Biología, Pontificia Universidad Católica de Valparaíso

Email: nrcki@nrcki.ru
Valparaíso 2340000, Chile

A. Neaman

Facultad de Ciencias Agronómicas, Universidad de Tarapacá

Email: nrcki@nrcki.ru
Arica 1000000, Chile

References

  1. Vorobeichik E.L., Kozlov M.V. Impact of point polluters on terrestrial ecosystems: Methodology of research, experimental design, and typical errors // Russ. J. Ecol. 2012. V. 43. № 2. P. 89–96. https://doi.org/10.1134/s1067413612020166
  2. Koptsik S.V., Koptsik G.N. Assessment of current risks of excessive heavy metal accumulation in soils based on the concept of critical loads: A review // Eurasian Soil Science. 2022. V. 55. № 5. P. 627–640. https://doi.org/10.1134/s1064229322050039
  3. Minkina T.M., Motuzova G.V., Mandzhieva S.S., Nazarenko O.G. Ecological resistance of the soilplant system to contamination by heavy metals // J. Geochem. Explor. 2012. V. 123. P. 33–40. https://doi.org/10.1016/j.gexplo.2012.08.021
  4. Adriano D.C. Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risk of metals. New York: Springer-Verlag, 2001. 867 p.
  5. Duffus J.H. “Heavy metals” a meaningless term? (IUPAC Technical Report) // Pure Appl. Chem. 2002. V. 74. P. 793–807. https://doi.org/10.1351/pac200274050793
  6. Hodson M.E. Heavy metals – geochemical bogey men? // Environ Pollut. 2004. V. 129. № 3. P. 341–343. https://doi.org/10.1016/j.envpol.2003.11.003
  7. Neaman A. Soil metals // Idesia (Chile). 2022. V. 40. № 2. P. 2–6. https://doi.org/10.4067/S0718-34292022000200002 https://doi.org/10.4067/S0718-34292022000200002
  8. Santa-Cruz J., Peñaloza P., Korneykova M.V., Neaman A. Thresholds of metal and metalloid toxicity in field-collected anthropogenically contaminated soils: A review // Geogr. Environ. Sustain. 2021. V. 14. № 2. P. 6–21. https://doi.org/10.24057/2071-9388-2021-023
  9. Zhikharev A.P., Sahakyan L., Tepanosyan G. et al. Metal phytotoxicity thresholds in copper smelter-contaminated soils // Idesia (Chile). 2022. V. 40. № 3. P. 135–143. https://doi.org/10.4067/S0718-34292022000300135
  10. Wieser P.E., Jenner F.E. Chalcophile elements: Systematics and relevance // Encyclopedia of Geology (Second Edition) / Eds. Alderton D., Elias S.A. Cambridge, MA: Academic Press, 2021. P. 67–80.
  11. Vorobeichik E.L. Natural recovery of terrestrial ecosystems after the cessation of industrial pollution: A state-of-the-art review // Russ. J. Ecol. 2022. V. 53. № 1. P. 1–39. https://doi.org/10.1134/s1067413622010118
  12. Neaman A., Tapia-Pizarro F., Kozlova E.V. et al. Comparative sensitivity of earthworms and microorganisms as bioindicators of copper toxicity in a monometallic contamination site // Int. J. Agric. Nat. Resour. 2025. V. 52. № 2. P. 79–91. https://doi.org/10.7764/ijanr.v52i2.90774 https://doi.org/10.7764/ijanr.v52i2.90774
  13. Tapia-Pizarro F., Dovletyarova E.A., Gunko A.A. et al. The effect of laboratory testing duration on copper phytotoxicity in industrially polluted soils // Biol. Bull. 2025. V. 52. P. 289–297. https://doi.org/10.1134/S1062359025612273
  14. Gunko A.A. The exploration of the old copper mines of XVII–XIX centuries in Tatarstan // Peshchery (Caves). 2008. V. 31. P. 74–89.
  15. Gunko A. Research prospects of old mine workings in the Ural mountains // Proceedings of the 16th International Congress of Speleology. Czech Republic, Brno, 2013. P. 213–216.
  16. Dovletyarova E.A., Zhikharev A.P., Polyakov D.G. et al. Extremely high soil copper content, yet low phytotoxicity: A unique case of monometallic soil pollution at Kargaly, Russia // Environ. Toxicol. Chem. 2023. V. 42. № 3. P. 707–713. https://doi.org/10.1002/etc.5562
  17. Dovletyarova E.A., Zhikharev A.P., Polyakov D.G. et al. Copper phytotoxicity thresholds for sunflower: A field experiment at a site with unique monometallic soil contamination // Russ. J. Plant Physiol. 2024. V. 71. Art. 224. https://doi.org/10.1134/S1021443724608735
  18. Garcia J.M.V., Navarrete M.I.M., Saez J.A.L., Morencos I.D. Environmental impact of copper mining and metallurgy during the Bronze Age at Kargaly (Orenburg region, Russia) // Trabajos de Prehistoria. 2010. V. 67. № 2. P. 511–544. https://doi.org/10.3989/tp.2010.10054 https://doi.org/10.3989/tp.2010.10054
  19. Marschner H. Mineral nutrition of higher plants. London, United Kingdom: Academic Press, 2003.
  20. Soil Survey Staff. Keys to Soil Taxonomy. Washington, DC, USA: United States Department of Agriculture, National Resources Conservation Service, 2022. 410 p.
  21. Khitrov N.B., Gerasimova M.I. Diagnostic horizons in the classification system of Russian soils: Version 2021 // Eurasian Soil Science. 2021. V. 54. № 8. P. 1131–1140. https://doi.org/10.1134/s1064229321080093
  22. Selles I., Neaman A., Krutyakov Y.A., Ginocchio R. Rising copper exposure effects on nutrient uptake in two species with distinct copper tolerance // Russ. J. Plant Physiol. 2021. V. 68. № 2. P. 300–306. https://doi.org/10.1134/S1021443721020175
  23. Sauvé S., Hendershot W., Allen H. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter // Environ. Sci. Technol. 2000. V. 34. P. 1125–1131. https://doi.org/10.1021/es9907764
  24. Ball J.W., Nordstrom D.K. User’s manual for WATEQ4F, with revised thermodynamic data base and text cases for calculating speciation of major, trace, and redox elements in natural waters. Menlo Park, CA, USA: US Geological Survey, 1991. 189 p.
  25. Verdejo J., Ginocchio R., Sauvé S. et al. Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile // Ecotoxicol. Environ. Saf. 2015. V. 122. P. 171–177. https://doi.org/10.1016/j.ecoenv.2015.07.026
  26. Verdejo J., Ginocchio R., Sauvé S. et al. Thresholds of copper toxicity to lettuce in field-collected agricultural soils exposed to copper mining activities in Chile // J. Soil Sci. Plant Nutr. 2016. V. 16. P. 154–158. https://doi.org/10.4067/S0718-95162016005000011
  27. Mondaca P., Catrin J., Verdejo J. et al. Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile // Environ Pollut. 2017. V. 223. P. 146–152. https://doi.org/10.1016/j.envpol.2016.12.076
  28. Marschner H. Zinc uptake from soils // Zinc in Soils and Plants / Eds. Robson A.D. Dordrecht, The Netherlands, 1993. P. 59–77.
  29. Prudnikova E.V., Neaman A., Terekhova V.A. et al. Root elongation method for the quality assessment of metal- polluted soils: Whole soil or soil-water extract? // J. Soil Sci. Plant Nutr. 2020. V. 20. P. 2294–2303. https://doi.org/10.1007/s42729-020-00295-x
  30. Peñaloza P., Valdebenito S., Vidal K. et al. Decoding phytotoxicity: the predictive power of total soil copper content in long-term pepper growth in copper-polluted soils // Russ. J. Plant Physiol. 2024. V. 71. Art. 127. https://doi.org/10.1134/S102144372460 4853
  31. Lillo-Robles F., Tapia-Gatica J., Díaz-Siefer P. et al. Which soil Cu pool governs phytotoxicity in fieldcollected soils contaminated by copper smelting activities in central Chile? // Chemosphere. 2020. V. 242. Art. 125176. https://doi.org/10.1016/j.chemosphere.2019.125176

Supplementary files

Supplementary Files
Action
1. JATS XML
2. ОЦЕНКА ТОКСИЧНОСТИ МЕДИ ДЛЯ ПОДСОЛНЕЧНИКА В УСЛОВИЯХ УНИКАЛЬНОГО МОНОЭЛЕМЕНТНОГО ЗАГРЯЗНЕНИЯ ПОЧВ
Download (3MB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).