Assessment of copper toxicity to sunflower under monometallic soil contamination conditions
- Authors: Tapia-Pizarro F.1, Dovletyarova E.A.1, Polyakov D.G.2, Bogdanov S.V.2, Terekhova N.A.3, Fedorov T.V.4, Karpukhin M.M.5, Krutyakov Y.A.6,7, Yanez C.8, Neaman A.9
-
Affiliations:
- Department of Landscape Design and Sustainable Ecosystems, Peoples Friendship University of Russia (RUDN University)
- Institute of Steppe, Ural Branch of the Russian Academy of Sciences
- Department of Biology and Soil Science, Faculty of Chemistry and Biology, Orenburg State University
- Mining Institute, Ural Branch of the Russian Academy of Sciences
- Faculty of Geology, Lomonosov Moscow State University
- National Research Centre "Kurchatov Institute"
- Laboratory of Functional Materials for Agriculture, Department of Chemistry, Lomonosov Moscow State University
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso
- Facultad de Ciencias Agronómicas, Universidad de Tarapacá
- Issue: No 6 (2025)
- Pages: 429-436
- Section: Articles
- URL: https://journals.rcsi.science/0367-0597/article/view/379403
- DOI: https://doi.org/10.7868/S3034614225060023
- ID: 379403
Cite item
Abstract
Keywords
About the authors
F. Tapia-Pizarro
Department of Landscape Design and Sustainable Ecosystems, Peoples Friendship University of Russia (RUDN University)
Email: nrcki@nrcki.ru
Moscow 117198, Russia
E. A. Dovletyarova
Department of Landscape Design and Sustainable Ecosystems, Peoples Friendship University of Russia (RUDN University)
Email: nrcki@nrcki.ru
Moscow 117198, Russia
D. G. Polyakov
Institute of Steppe, Ural Branch of the Russian Academy of Sciences
Email: nrcki@nrcki.ru
Orenburg 460000, Russia
S. V. Bogdanov
Institute of Steppe, Ural Branch of the Russian Academy of Sciences
Email: nrcki@nrcki.ru
Orenburg 460000, Russia
N. A. Terekhova
Department of Biology and Soil Science, Faculty of Chemistry and Biology, Orenburg State University
Email: nrcki@nrcki.ru
Orenburg 460018, Russia
T. V. Fedorov
Mining Institute, Ural Branch of the Russian Academy of Sciences
Email: nrcki@nrcki.ru
Perm 614007, Russia
M. M. Karpukhin
Faculty of Geology, Lomonosov Moscow State University
Email: nrcki@nrcki.ru
Moscow 119991, Russia
Y. A. Krutyakov
National Research Centre "Kurchatov Institute"; Laboratory of Functional Materials for Agriculture, Department of Chemistry, Lomonosov Moscow State University
Email: nrcki@nrcki.ru
Moscow 123182, Russia; Moscow 119991, Russia
C. Yanez
Instituto de Biología, Pontificia Universidad Católica de Valparaíso
Email: nrcki@nrcki.ru
Valparaíso 2340000, Chile
A. Neaman
Facultad de Ciencias Agronómicas, Universidad de Tarapacá
Email: nrcki@nrcki.ru
Arica 1000000, Chile
References
- Vorobeichik E.L., Kozlov M.V. Impact of point polluters on terrestrial ecosystems: Methodology of research, experimental design, and typical errors // Russ. J. Ecol. 2012. V. 43. № 2. P. 89–96. https://doi.org/10.1134/s1067413612020166
- Koptsik S.V., Koptsik G.N. Assessment of current risks of excessive heavy metal accumulation in soils based on the concept of critical loads: A review // Eurasian Soil Science. 2022. V. 55. № 5. P. 627–640. https://doi.org/10.1134/s1064229322050039
- Minkina T.M., Motuzova G.V., Mandzhieva S.S., Nazarenko O.G. Ecological resistance of the soilplant system to contamination by heavy metals // J. Geochem. Explor. 2012. V. 123. P. 33–40. https://doi.org/10.1016/j.gexplo.2012.08.021
- Adriano D.C. Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risk of metals. New York: Springer-Verlag, 2001. 867 p.
- Duffus J.H. “Heavy metals” a meaningless term? (IUPAC Technical Report) // Pure Appl. Chem. 2002. V. 74. P. 793–807. https://doi.org/10.1351/pac200274050793
- Hodson M.E. Heavy metals – geochemical bogey men? // Environ Pollut. 2004. V. 129. № 3. P. 341–343. https://doi.org/10.1016/j.envpol.2003.11.003
- Neaman A. Soil metals // Idesia (Chile). 2022. V. 40. № 2. P. 2–6. https://doi.org/10.4067/S0718-34292022000200002 https://doi.org/10.4067/S0718-34292022000200002
- Santa-Cruz J., Peñaloza P., Korneykova M.V., Neaman A. Thresholds of metal and metalloid toxicity in field-collected anthropogenically contaminated soils: A review // Geogr. Environ. Sustain. 2021. V. 14. № 2. P. 6–21. https://doi.org/10.24057/2071-9388-2021-023
- Zhikharev A.P., Sahakyan L., Tepanosyan G. et al. Metal phytotoxicity thresholds in copper smelter-contaminated soils // Idesia (Chile). 2022. V. 40. № 3. P. 135–143. https://doi.org/10.4067/S0718-34292022000300135
- Wieser P.E., Jenner F.E. Chalcophile elements: Systematics and relevance // Encyclopedia of Geology (Second Edition) / Eds. Alderton D., Elias S.A. Cambridge, MA: Academic Press, 2021. P. 67–80.
- Vorobeichik E.L. Natural recovery of terrestrial ecosystems after the cessation of industrial pollution: A state-of-the-art review // Russ. J. Ecol. 2022. V. 53. № 1. P. 1–39. https://doi.org/10.1134/s1067413622010118
- Neaman A., Tapia-Pizarro F., Kozlova E.V. et al. Comparative sensitivity of earthworms and microorganisms as bioindicators of copper toxicity in a monometallic contamination site // Int. J. Agric. Nat. Resour. 2025. V. 52. № 2. P. 79–91. https://doi.org/10.7764/ijanr.v52i2.90774 https://doi.org/10.7764/ijanr.v52i2.90774
- Tapia-Pizarro F., Dovletyarova E.A., Gunko A.A. et al. The effect of laboratory testing duration on copper phytotoxicity in industrially polluted soils // Biol. Bull. 2025. V. 52. P. 289–297. https://doi.org/10.1134/S1062359025612273
- Gunko A.A. The exploration of the old copper mines of XVII–XIX centuries in Tatarstan // Peshchery (Caves). 2008. V. 31. P. 74–89.
- Gunko A. Research prospects of old mine workings in the Ural mountains // Proceedings of the 16th International Congress of Speleology. Czech Republic, Brno, 2013. P. 213–216.
- Dovletyarova E.A., Zhikharev A.P., Polyakov D.G. et al. Extremely high soil copper content, yet low phytotoxicity: A unique case of monometallic soil pollution at Kargaly, Russia // Environ. Toxicol. Chem. 2023. V. 42. № 3. P. 707–713. https://doi.org/10.1002/etc.5562
- Dovletyarova E.A., Zhikharev A.P., Polyakov D.G. et al. Copper phytotoxicity thresholds for sunflower: A field experiment at a site with unique monometallic soil contamination // Russ. J. Plant Physiol. 2024. V. 71. Art. 224. https://doi.org/10.1134/S1021443724608735
- Garcia J.M.V., Navarrete M.I.M., Saez J.A.L., Morencos I.D. Environmental impact of copper mining and metallurgy during the Bronze Age at Kargaly (Orenburg region, Russia) // Trabajos de Prehistoria. 2010. V. 67. № 2. P. 511–544. https://doi.org/10.3989/tp.2010.10054 https://doi.org/10.3989/tp.2010.10054
- Marschner H. Mineral nutrition of higher plants. London, United Kingdom: Academic Press, 2003.
- Soil Survey Staff. Keys to Soil Taxonomy. Washington, DC, USA: United States Department of Agriculture, National Resources Conservation Service, 2022. 410 p.
- Khitrov N.B., Gerasimova M.I. Diagnostic horizons in the classification system of Russian soils: Version 2021 // Eurasian Soil Science. 2021. V. 54. № 8. P. 1131–1140. https://doi.org/10.1134/s1064229321080093
- Selles I., Neaman A., Krutyakov Y.A., Ginocchio R. Rising copper exposure effects on nutrient uptake in two species with distinct copper tolerance // Russ. J. Plant Physiol. 2021. V. 68. № 2. P. 300–306. https://doi.org/10.1134/S1021443721020175
- Sauvé S., Hendershot W., Allen H. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter // Environ. Sci. Technol. 2000. V. 34. P. 1125–1131. https://doi.org/10.1021/es9907764
- Ball J.W., Nordstrom D.K. User’s manual for WATEQ4F, with revised thermodynamic data base and text cases for calculating speciation of major, trace, and redox elements in natural waters. Menlo Park, CA, USA: US Geological Survey, 1991. 189 p.
- Verdejo J., Ginocchio R., Sauvé S. et al. Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile // Ecotoxicol. Environ. Saf. 2015. V. 122. P. 171–177. https://doi.org/10.1016/j.ecoenv.2015.07.026
- Verdejo J., Ginocchio R., Sauvé S. et al. Thresholds of copper toxicity to lettuce in field-collected agricultural soils exposed to copper mining activities in Chile // J. Soil Sci. Plant Nutr. 2016. V. 16. P. 154–158. https://doi.org/10.4067/S0718-95162016005000011
- Mondaca P., Catrin J., Verdejo J. et al. Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile // Environ Pollut. 2017. V. 223. P. 146–152. https://doi.org/10.1016/j.envpol.2016.12.076
- Marschner H. Zinc uptake from soils // Zinc in Soils and Plants / Eds. Robson A.D. Dordrecht, The Netherlands, 1993. P. 59–77.
- Prudnikova E.V., Neaman A., Terekhova V.A. et al. Root elongation method for the quality assessment of metal- polluted soils: Whole soil or soil-water extract? // J. Soil Sci. Plant Nutr. 2020. V. 20. P. 2294–2303. https://doi.org/10.1007/s42729-020-00295-x
- Peñaloza P., Valdebenito S., Vidal K. et al. Decoding phytotoxicity: the predictive power of total soil copper content in long-term pepper growth in copper-polluted soils // Russ. J. Plant Physiol. 2024. V. 71. Art. 127. https://doi.org/10.1134/S102144372460 4853
- Lillo-Robles F., Tapia-Gatica J., Díaz-Siefer P. et al. Which soil Cu pool governs phytotoxicity in fieldcollected soils contaminated by copper smelting activities in central Chile? // Chemosphere. 2020. V. 242. Art. 125176. https://doi.org/10.1016/j.chemosphere.2019.125176
Supplementary files


