Phenotypic variability of Aphantopus hyperantus and Coenonympha arcania (Lepidoptera: Nymphalidae) in the vicinity of the Middle Ural Copper Smelter. Part 2. Wing shape and eyespot size

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We tested hypotheses that the accumulation of potentially toxic metals (Cu and Zn) in the imagoes of two Nymphalid species (Aphantopus hyperantus and Coenonympha arcania) correlates with wing shape and eyespot size, as well as increases their fluctuating asymmetry. These traits are less functionally significant compared to wing length, for which no negative impact of pollution was previously found in these species. Therefore, theoretically, their fluctuating asymmetry may better indicate stress. Butterflies were collected at different distances from the Middle Ural Copper Smelter (Revda, Russia). The shape of the forewings and hindwings was analyzed using geometric morphometrics. Eyespot sizes were measured on the ventral side of the forewings and hindwings. Wing shape and its fluctuating asymmetry did not differ between sites in all cases (two species, males and females) but, in one case, correlated with metals (C. arcania females). Eyespot size differed between sites in one species (C. arcania) and, only in females of this species, negatively correlated with Cu (only for two out of five analyzed eyespots). The fluctuating asymmetry of eyespot size differed between sites only in one case (A. hyperantus males), but it was not highest near the smelter; only in C. arcania females, asymmetry decreased with increasing Zn. Thus, the tested hypotheses were not unequivocally confirmed: although some pollution effects were found at both the group (differences between sites) and individual (correlation with metals) levels, they were very weak, specific to trait, species, and sex, and therefore, most likely occasional. The results add to doubts about the informativeness of fluctuating asymmetry as an indicator of stress in natural insect populations.

Full Text

Restricted Access

About the authors

A. О. Shkurihina

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: ashkurikhin@yandex.ru
Russian Federation, 620144 Yekaterinburg

E. Y. Zakharova

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: ashkurikhin@yandex.ru
Russian Federation, 620144 Yekaterinburg

E. L. Vorobeichik

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: ashkurikhin@yandex.ru
Russian Federation, 620144 Yekaterinburg

References

  1. Шкурихин А.О., Захарова Е.Ю., Воробейчик Е.Л. Фенотипическая изменчивость Aphantopus hyperantus и Coenonympha arcania (Lepidoptera: Nymphalidae) в окрестностях Среднеуральского медеплавильного завода. 1. Содержание металлов и длина крыла // Экология. 2023. № 6. С. 453–469. https://doi.org/10.31857/S0367059723060094
  2. Zverev V., Kozlov M.V. The fluctuating asymmetry of the butterfly wing pattern does not change along an industrial pollution gradient // Symmetry. 2021. V. 13. Art. 626. https://doi.org/10.3390/sym13040626
  3. Polak M., Møller A.P., Gangestad S.W. et al. Does an individual asymmetry parameter exist? A meta-analysis // Developmental Instability: Causes and Consequences / Ed. Polak M. New York: Oxford University Press, 2003. P. 81–96.
  4. Crespi B.J., Vanderkist B.A. Fluctuating asymmetry in vestigial and functional traits of a haplodiploid insect // Heredity. 1997. V. 79. P. 624–630. https://doi.org/10.1038/hdy.1997.208
  5. Leung B., Forbes M.R., Houle D. Fluctuating asymmetry as a bioindicator of stress: comparing efficacy of analyses involving multiple traits // American Naturalist. 2000. V. 155. P. 101–115. https://doi.org/10.1086/303298
  6. Palmer A.R., Strobeck C. Fluctuating asymmetry analyses revisited // Developmental instability: causes and consequences / Ed. Polak M. New York: Oxford University Press, 2003. P. 279–319.
  7. Dudley R. The biomechanics of insect flight: form, function, evolution. Princeton: Princeton University Press, 2002. 476 p.
  8. Le Roy C., Debat V., Llaurens V. Adaptive evolution of butterfly wing shape: from morphology to behavior // Biol. Rev. Cambr. Philos. Soc. 2019. V. 94. № 4. P. 1261–1281. https://doi.org/10.1111/brv.12500
  9. Adams D.C., Rohlf F.J., Slice D.E. Geometric morphometrics: ten years of progress following the “revolution” // Ital. J. Zool. 2004. V. 71. P. 5–16. https://doi.org/10.1080/11250000409356545
  10. Adams D.C., Rohlf F.J., Slice D.E. A field comes of age: geometric morphometrics in the 21st century // Hystrix: Ital. J. Mammal. 2013. V. 24. P. 7–14. https://doi.org/10.4404/hystrix-24.1-6283
  11. Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L. Geometric morphometrics for biologist: a primer. New York: Elsevier Academic Press, 2004. 443 p.
  12. Mitteroecker P., Gunz P. Advances in geometric morphometrics // Evol. Biol. 2009. V. 36. P. 235–247. https://doi.org/10.1007/s11692-009-9055-x
  13. Schwanwitsch B.N. On the groundplan of the wing pattern in nymphalids and certain other families of rhopalocerous Lepidoptera // Proc. Zool. Soc. Lond. B. 1924. V. 34. P. 509–528. https://doi.org/10.1111/J.1096-3642.1924.TB01511.X
  14. Nijhout H.F. The development and evolution of butterfly wing patterns. Washington: Smithsonian Institution Press, 1991. 297 p.
  15. Diversity and evolution of butterfly wing patterns / Eds. Sekimura T., Nijhout H.F. Singapore: Springer Nature, 2017. 321 p.
  16. Monteiro A. Origin, development, and evolution of butterfly eyespots // Annu. Rev. Entomol. 2015. V. 60. P. 253–271. https://doi.org/10.1146/annurev-ento-010814-020942
  17. Nijhout H.F. A comprehensive model for colour pattern formation in butterflies // Proc. R. Soc. Lond. B Biol. Sci. 1990. V. 239. P. 81–113. https://doi.org/10.1098/rspb.1990.0009
  18. Iwata M., Otaki J.M. Focusing on butterfly eyespot focus: uncoupling of white spots from eyespot bodies in nymphalid butterflies // SpringerPlus. 2016. V. 5. Art. 1287. https://doi.org/10.1186/s40064-016-2969-8
  19. Ford E.B. Ecological genetics. 2-nd ed. Methuen, London, 1965. 335 p.
  20. Frazer J.F.D., Willcox H.N.A. Variation in spotting among the close relatives of the butterfly, Maniola jurtina // Heredity. 1975. V. 34. № 3. P. 305–322. https://doi.org/10.1038/hdy.1975.41
  21. Roskam J.C., Brakefield P.M. Seasonal polyphenism in Bicyclus (Lepidoptera: Satyridae) butterflies: different climates need different cues // Biol. J. Linn. Soc. 1999. V. 66. P. 345–356. https://doi.org/10.1111/j.1095-8312.1999.tb01895.x
  22. Brakefield P., Gates J., Keys D. et al. Development, plasticity and evolution of butterfly eyespot patterns // Nature. 1996. V. 384. № 21. P. 236–241. https://doi.org/10.1038/384236a0
  23. Bhardwaj S., Jolander L.S.H., Wenk M.R. et al. Origin of the mechanism of phenotypic plasticity in satyrid butterfly eyespots // eLife. 2020. V. 9. P. 1–13. https://doi.org/10.7554/eLife.49544
  24. Marcus J.M. Evo-Devo of butterfly wing patterns // Evolutionary Developmental Biology-A Reference Guide / Eds. L. Nuño de la Rosa, G.B. Müller. Cham: Springer, 2019. P. 1–13.
  25. Seppänen R. Differences in spotting pattern between populations of Aphantopus hyperantus (Lepidoptera, Satyridae) in southern Finland // Ann. Zool. Fenn. 1981. V. 18. P. 1–36.
  26. Горбач В.В. Внутрипопуляционная изменчивость элементов рисунка на крыльях глазка цветочного Aphantopus hyperantus (Lepidoptera, Satyridae) // Уч. зап. Петрозав. гос. ун-та. 2012. № 6. С. 27–31.
  27. Захарова Е.Ю., Шкурихин А.О. Морфологическая изменчивость бархатниц Aphantopus hyperantus и Erebia ligea (Lepidoptera, Satyridae) в аллопатрических и аллохронных микропопуляциях // Зоол. журн. 2021. Т. 100. Вып. 10. С. 1110–1123. https://doi.org/10.31857/S0044513421100135
  28. Захарова Е.Ю. Фенотипическая изменчивость сенницы Coenonympha arcania L. (Lepidoptera, Satyridae) в естественных и антропогенно трансформированных местообитаниях Среднего и Южного Урала // Энтомол. обозр. 2012. Т. 91. № 2. С. 250–268.
  29. Prudic K.L., Stoehr A.M., Wasik B.R., Monteiro A. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity // Proc. R. Soc. Lond. B: Biol. Sci. 2015. V. 282. Art. 20141531. https://doi.org/10.1098/rspb.2014.1531
  30. Vallin A., Jakobsson S., Lind J., Wiklund C. Prey survival by predator intimidation: an experimental study of peacock butterfly defence against blue tits // Proc. R. Soc. Lond. B Biol. Sci. 2005. V. 272. P. 1203–1207. https://doi.org/10.1098/rspb.2004.3034
  31. Kodandaramaiah U., Vallin A., Wiklund C. Fixed eyespot display in a butterfly thwarts attacking birds // Anim. Behav. 2009. V. 77. P. 1415–1419. https://doi.org/10.1016/j.anbehav.2009.02.018
  32. Kodandaramaiah U. The evolutionary significance of butterfly eyespots // Behav. Ecol. 2011. V. 22. P. 1264–1271. https://doi.org/10.1093/beheco/arr123
  33. Breuker C.J., Brakefield P.M. Female choice depends on size but not symmetry of dorsal eyespots in the butterfly Bicyclus anynana // Proc. R. Soc. Lond. B Biol. Sci. 2002. V. 269. P. 1233–1239. https://doi.org/10.1098/rspb.2002.2005
  34. Hoffman A.A., Woods R.E., Collins E. et al. Wing shape versus asymmetry as an indicator of changing environmental conditions in insects // Austr. J. Entomol. 2005. V. 44. P. 233–243. https://doi.org/10.1111/j.1440-6055.2005.00469.x
  35. Nijhout H.F., McKenna K.Z. Wing morphogenesis in Lepidoptera // Progr. Biophys. Molec. Biol. 2018. V. 137. P. 88–94. https://doi.org/10.1016/j.pbiomolbio.2018.04.008
  36. McKenna K.Z., Nijhout H.F. The development of shape. Modular control of growth in the lepidopteran forewing // JEZ-B. Molec. Dev. Evol. 2021. V. 338. P. 170–180. https://doi.org/10.1002/jez.b.23101
  37. Rohlf F.J. tpsDig2. 2017. URL: http://life.bio.sunysb.edu/morph/index.html
  38. Rasband W.S. ImageJ. 2014. URL: http://imagej.nih.gov/ij/
  39. Zakharova E.Yu., Shkurikhin A.O., Oslina T.S. Morphological variation of Melanargia russiae (Esper, 1783) (Lepidoptera, Satyridae) from the main part of the range and in case of its expansion to the north under climate change conditions // Contemp. Probl. Ecol. 2017. V. 10. P. 488–501. https://doi.org/10.1134/S1995425517050146
  40. Некрутенко Ю.П. Булавоусые чешуекрылые Крыма: Определитель. Киев: Наукова думка, 1985. 152 с.
  41. Klingenberg C.P., McIntyre G.S. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods // Evolution. 1998. V. 52. P. 1363–1375. https://doi.org/10.1111/j.1558-5646.1998.tb02018.x
  42. Klingenberg C.P., Barluenga M., Meyer A. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry // Evolution. 2002. V. 56. P. 1909–1920. https://doi.org/10.1111/j.0014-3820.2002.tb00117.x
  43. Jackson D.A. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches // Ecology. 1993. V. 74. P. 2204–2214. https://doi.org/10.2307/1939574
  44. Klingenberg C.P. Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications // Symmetry. 2015. V. 7. P. 843–934. https://doi.org/10.3390/sym7020843
  45. Symanski C., Redak R.A. Does fluctuating asymmetry of wing traits capture relative environmental stress in a lepidopteran? // Ecol. Evol. 2021. V. 11. P. 1199–1213. https://doi.org/10.1002/ece3.7097
  46. Drake A.G., Klingenberg C.P. The pace of morphological change: historical transformation of skull shape in St Bernard dogs // Proc. R. Soc. Lond. Ser. B: Biol. Sci. 2008. V. 275. P. 71–76. https://doi.org/10.1098/rspb.2007.1169
  47. Klingenberg C.P. Size, shape, and form: concepts of allometry in geometric morphometrics // Dev. Gen. Evol. 2016. V. 226. P. 113–137. https://doi.org/10.1007/s00427-016-0539-2
  48. Hammer Ø., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis // Palaeont. Electr. 2001. V. 4. № 1. P. 1–9.
  49. Klingenberg C.P. MorphoJ: an integrated software package for geometric morphometrics // Mol. Ecol. Res. 2011. V. 11. P. 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
  50. Ellington C. The aerodynamics of hovering insect flight. II. Morphological parameters // Philos. Trans. R. Soc. Lond. Ser B: Biol. Sci. 1984. V. 305. P. 17–40. https://doi.org/10.1098/rstb.1984.0050
  51. Szentgyorgyi H., Moroń D., Nawrocka A. et al. Forewing structure of the solitary bee Osmia bicornis developing on heavy metal pollution gradient // Ecotoxicology. 2017. V. 26. P. 1031–1040. https://doi.org/10.1007/s10646-017-1831-2
  52. Olofsson M., Vallin A., Jakobsson S., Wiklund C. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths // PLoS ONE. 2010. V. 5. № 5. Art. e10798. https://doi.org/10.1371/journal.pone.0010798
  53. Lyytinen A., Brakefield P.M, Lindstrӧm L., Mappes J. Does predation maintain eyespot plasticity in Bicyclus anynana? // Proc. R. Soc. Lond. B Biol. Sci. 2004. V. 271. P. 279–283. https://doi.org/10.1098/rspb.2003.2571
  54. Halali D., Krishna A., Kodandaramaiah U., Molleman F. Lizards as predators of butterflies: shape of wing damage and effects of eyespots // J. Lepid. Soc. 2019. V. 73. № 2. P. 78–86. https://doi.org/10.18473/lepi.73i2.a2
  55. Lyytinen A., Brakefield P.M., Mappes J. Significance of butterfly eyespots as an anti-predator device in ground-based and aerial attacks // Oikos. 2003. V. 100. P. 372–379. https://doi.org/10.1034/j.1600-0706.2003.11935.x
  56. Vlieger L., Brakefield P.M. The deflection hypothesis: eyespots on the margins of butterfly wings do not influence predation by lizards // Biol. J. Linn. Soc. 2007. V. 92. P. 661–667. https://doi.org/10.1111/j.1095-8312.2007.00863.x
  57. Захарова Е.Ю., Юсупова О.В. Морфологическая изменчивость и ландшафтно-биотопическая приуроченность микропопуляций сенницы Coenonympha arcania (L.) (Lepidoptera: Satyridae) в условиях гор Южного Урала // Бюл. МОИП. Отд. биол. 2017. Т. 122. Вып. 2. С. 18–26.
  58. Brakefield P.M. Phenotypic plasticity and fluctuating asymmetry as responses to environmental stress in the butterfly Bicyclus anynana // Environmental stress, adaptation and evolution / Eds. Bijlsma R., Loeschcke V. Basel: Birkäuser, 1997. P. 65–78.
  59. Breuker C.J., Brakefield P.M. Heat shock in the developmentally sensitive period of butterfly eyespots fails to increase fluctuating asymmetry // Evol. Dev. 2003. V. 5. № 3. P. 231–239. https://doi.org/10.1046/j.1525-142X.2003.03031.x
  60. Escós J.M., Alados C.L., Pugnaire F.I. et al. Stress resistance strategy in arid land shrub: interaction between developmental instability and fractal dimension // J. Arid Environ. 2000. V. 45. P. 325–336. https://doi.org/10.1006/jare.2000.0641
  61. Graham J.H., Raz S., Hel-Or H., Nevo E. Fluctuating asymmetry: methods, theory, and applications // Symmetry. 2010. V. 2. P. 466–540. https://doi.org/10.3390/sym2020466
  62. Huang D., Kong J., Seng Y. Effects of the heavy metal Cu2+ on growth, development, and population dynamics of Spodoptera litura (Lepidoptera: Noctuidae) // J. Econ. Entomol. 2012. V. 105. №1. P. 288–294. https://doi.org/10.1603/ec11163
  63. Islam S.J., Manna P., Unni B., Kailta J. Higher concentrations of heavy metals impair antioxidant defense mechanism and growth response of muga silkworm, Antheraea assamensis (Lepidoptera: Saturniidae) // J. Entomol. Zool. Stud. 2019. V. 7. № 2. P. 715–724.
  64. Jin P., Chen J., Zhan H. et al. Accumulation and excretion of zinc and their effects on growth and food utilization of Spodoptera litura (Lepidoptera: Noctuidae) // Ecotoxicol. Environ. Saf. 2020. V. 202. Art. 110883. https://doi.org/10.1016/j.ecoenv.2020.110883
  65. Shephard A.M., Mitchell T.S., Henry S.B. et al. Assessing zinc tolerance in two butterfly species: consequences for conservation in polluted environments // Insect Conserv. Diver. 2020. P. 201–210. https://doi.org/10.1111/icad.12404
  66. Kozlov M.V., Zvereva E.L. Confirmation bias in studies of fluctuating asymmetry // Ecol. Indic. 2015. V. 57. P. 293–297. https://doi.org/10.1016/j.ecolind.2015.05.014
  67. Козлов М.В. Исследования флуктуирующей асимметрии растений в России: мифология и методология // Экология. 2017. № 1. С. 3–12. https://doi.org/10.7868/S0367059717010103
  68. Kozlov M.V. Blind measurements did not confirm effects of forest fragmentation on fluctuating asymmetry of a tropical butterfly Morpho helenor // Sci. Nat. 2024. V. 110. Art. 28. https://doi.org/10.1007/s00114-024-01913-9
  69. Zakharov V.M. Analysis of fluctuating asymmetry as a method of biomonitoring at the population level // Bioind. Chem. Radioact. Pollut. / Ed. Krivolutsky D. Moscow, Boca Raton: Mir, CRC Press, 1990. P. 187–198.
  70. Clarke G.M. Fluctuating asymmetry: a technique for measuring developmental stress of genetic and environmental origin // Acta Zool. Fenn. 1992. V. 191. № 1. P. 31−35.
  71. Parsons P.A. Fluctuating asymmetry: an epigenetic measure of stress // Biol. Rev. 1990. V. 65. P. 131–145. https://doi.org/10.1111/j.1469-185x.1990.tb01186.x
  72. Parsons P.A. Fluctuating asymmetry: a biological monitor of environmental and genomic stress // Heredity. 1992. V. 68. № 4. P. 361−364. https://doi.org/10.1038/hdy.1992.51
  73. Bjorksten T., David P., Pomiankowski A., Fowler K. Fluctuating asymmetry of sexual and nonsexual traits in stalk-eyed flies: a poor indicator of developmental stress and genetic quality // J. Evol. Biol. 2000. V. 13. P. 89–97. https://doi.org/10.1046/j.1420-9101.2000.00146.x
  74. Cárcamo H.A., Floate K.D., Lee B.L. et al. Developmental instability in a stem-mining sawfly: can fluctuating asymmetry detect plant host stress in a model system? // Oecologia. 2008. V. 156. P. 505–513. https://doi.org/10.1007/s00442-008-1009-y
  75. Graham J.H., Roe K.E., West T.B. Effects of lead and benzene on the developmental stability of Drosophila melanogaster // Ecotoxicology. 1993. V. 2. P. 185–195. https://doi.org/10.1007/BF00116423
  76. B onada N., Williams D.D. Exploration of the utility of fluctuating asymmetry as an indicator of river condition using larvae of the caddisfly Hydropsyche morosa (Trichoptera: Hydropsychidae) // Hydrobiologia. 2002. V. 481. P. 147–156. https://doi.org/10.1023/A:1021297503935
  77. Bonada N., Vives S., Rieradevall M., Prat N. Relationship between pollution and fluctuating asymmetry in the pollution-tolerant caddisfly Hydropsyche exocellata (Trichoptera, Insecta) // Arch. Hydrobiol. 2005. V. 162. P. 167–185. https://doi.org/10.1127/0003-9136/2005/0162-0167
  78. Görür G. Developmental instability in cabbage aphid (Brevicoryne brassicae) populations exposed to heavy metal accumulated host plants // Ecol. Indic. 2006. V. 6. P. 743–748. https://doi.org/10.1016/j.ecolind.2005.09.001
  79. Rabitsch W.B. Levels of asymmetry in Formica pratensis Retz. (Hymenoptera, Insecta) from a chronic metal-contaminated site // Environ. Toxicol. Chem. 1997. V. 16. P. 1433–1440. https://doi.org/10.1002/etc.5620160716
  80. Zverev V., Kozlov M.V. Decline of Eulia ministrana (Lepidoptera: Tortricidae) in polluted habitats is not accompanied by phenotypic stress responses // Insect Sci. 2021. V. 28. P. 1482–1490. https://doi.org/10.1111/1744-7917.12862
  81. Woods R.E., Sgrò C.M., Hercus M.J., Hoffmann A.A. The association between fluctuating asymmetry, trait variability, trait heritability, and stress: a multiply replicated experiment on combined stresses in Drosophila melanogaster // Evolution. 1999. V. 53. P. 493–505. https://doi.org/10.1111/j.1558-5646.1999.tb03784.x
  82. Polak M., Kroeger D., Cartwright I., Ponce de Leon C. Genotype-specific responses of fluctuating asymmetry and preadult survival to the effects of lead and temperature stress in Drosophila melanogaster // Environ. Pollut. 2004. V. 127. P. 145–155. https://doi.org/10.1016/s0269-7491(03)00238-0
  83. Harrison F. Getting started with meta-analysis // Methods Ecol. Evol. 2011. V. 2. P. 1–10. https://doi.org/10.1111/j.2041-210X.2010.00056.x
  84. Leung B., Forbes M.R. Fluctuating asymmetry in relation to stress and fitness: effects of trait type as revealed by meta-analysis // Ecoscience. 1996. V. 3. P. 400–413. https://doi.org/10.1080/11956860.1996.11682357
  85. Beasley D.A.E., Bonisoli-Alquati A., Mousseau T.A. The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: A metaanalysis // Ecol. Indic. 2013. V. 30. P. 218–226. https://doi.org/10.1016/j.ecolind.2013.02.024
  86. Frankham R. Stress and adaptation in conservation genetics // J. Evol. Biol. 2005. V. 18. P. 750–755. https://doi.org/10.1111/j.1420-9101.2005.00885.x
  87. Zvereva E.L., Kozlov M.V. Responses of terrestrial arthropods to air pollution: a meta-analysis // Environ. Sci. Pollut. Res. 2010. V. 17. P. 297–311. https://doi.org/10.1007/s11356-009-0138-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of arrangement of marks for geometric morphometry of wing shape (left) and measurements of wing pattern spots (right) in C. arcania and A. hyperantus. The nomenclature of spots is given according to [39], veins – according to [40].

Download (1MB)
3. Fig. 2. Dependence of the wing shape of female C. arcania on copper concentration: the control area is shown in green, the buffer area in red, and the impact area in black. The shape score is a projection of the object coordinate onto an axis in multidimensional space that coincides with the direction of the regression vector of the wing shape from the predictor [43, 44]. The differences in wing configuration corresponding to a 10,000-fold difference in copper concentration are shown at the top.

Download (105KB)
4. Fig. 3. Dependence of fluctuating wing shape asymmetry (FA18tot) on zinc concentration: control region is shown in green, background region is shown in blue, buffer region is shown in red, and impact region is shown in black.

Download (210KB)
5. Fig. 4. Ordination of plots based on canonical analysis of the size of the eyespots of males and females of C. arcania: green indicates the control plot, blue indicates the background plot, red indicates the buffer plot, and black indicates the impact plot. Vectors show the contribution of the original features to the canonical axes. The proportion of explained variance is in brackets.

Download (233KB)
6. Fig. 5. Dependence of the size of the eyespots of female C. arcania on the copper concentration: the control area is shown in green, the buffer area is shown in red, and the impact area is shown in black.

Download (334KB)
7. Fig. 6. Dependence of fluctuating asymmetry (FA17) of the size of eyespots on zinc concentration: the control area is shown in green, the background area is shown in blue, the buffer area is shown in red, and the impact area is shown in black.

Download (229KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».