Phenotypic variability of Aphantopus hyperantus and Coenonympha arcania (Lepidoptera: Nymphalidae) in the vicinity of the Middle Ural Copper Smelter. Part 2. Wing shape and eyespot size
- Authors: Shkurihina A.О.1, Zakharova E.Y.1, Vorobeichik E.L.1
-
Affiliations:
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
- Issue: No 1 (2025)
- Pages: 3-20
- Section: Articles
- URL: https://journals.rcsi.science/0367-0597/article/view/288621
- DOI: https://doi.org/10.31857/S0367059725010012
- EDN: https://elibrary.ru/uttfmx
- ID: 288621
Cite item
Abstract
We tested hypotheses that the accumulation of potentially toxic metals (Cu and Zn) in the imagoes of two Nymphalid species (Aphantopus hyperantus and Coenonympha arcania) correlates with wing shape and eyespot size, as well as increases their fluctuating asymmetry. These traits are less functionally significant compared to wing length, for which no negative impact of pollution was previously found in these species. Therefore, theoretically, their fluctuating asymmetry may better indicate stress. Butterflies were collected at different distances from the Middle Ural Copper Smelter (Revda, Russia). The shape of the forewings and hindwings was analyzed using geometric morphometrics. Eyespot sizes were measured on the ventral side of the forewings and hindwings. Wing shape and its fluctuating asymmetry did not differ between sites in all cases (two species, males and females) but, in one case, correlated with metals (C. arcania females). Eyespot size differed between sites in one species (C. arcania) and, only in females of this species, negatively correlated with Cu (only for two out of five analyzed eyespots). The fluctuating asymmetry of eyespot size differed between sites only in one case (A. hyperantus males), but it was not highest near the smelter; only in C. arcania females, asymmetry decreased with increasing Zn. Thus, the tested hypotheses were not unequivocally confirmed: although some pollution effects were found at both the group (differences between sites) and individual (correlation with metals) levels, they were very weak, specific to trait, species, and sex, and therefore, most likely occasional. The results add to doubts about the informativeness of fluctuating asymmetry as an indicator of stress in natural insect populations.
Full Text

About the authors
A. О. Shkurihina
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: ashkurikhin@yandex.ru
Russian Federation, 620144 Yekaterinburg
E. Y. Zakharova
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Email: ashkurikhin@yandex.ru
Russian Federation, 620144 Yekaterinburg
E. L. Vorobeichik
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Email: ashkurikhin@yandex.ru
Russian Federation, 620144 Yekaterinburg
References
- Шкурихин А.О., Захарова Е.Ю., Воробейчик Е.Л. Фенотипическая изменчивость Aphantopus hyperantus и Coenonympha arcania (Lepidoptera: Nymphalidae) в окрестностях Среднеуральского медеплавильного завода. 1. Содержание металлов и длина крыла // Экология. 2023. № 6. С. 453–469. https://doi.org/10.31857/S0367059723060094
- Zverev V., Kozlov M.V. The fluctuating asymmetry of the butterfly wing pattern does not change along an industrial pollution gradient // Symmetry. 2021. V. 13. Art. 626. https://doi.org/10.3390/sym13040626
- Polak M., Møller A.P., Gangestad S.W. et al. Does an individual asymmetry parameter exist? A meta-analysis // Developmental Instability: Causes and Consequences / Ed. Polak M. New York: Oxford University Press, 2003. P. 81–96.
- Crespi B.J., Vanderkist B.A. Fluctuating asymmetry in vestigial and functional traits of a haplodiploid insect // Heredity. 1997. V. 79. P. 624–630. https://doi.org/10.1038/hdy.1997.208
- Leung B., Forbes M.R., Houle D. Fluctuating asymmetry as a bioindicator of stress: comparing efficacy of analyses involving multiple traits // American Naturalist. 2000. V. 155. P. 101–115. https://doi.org/10.1086/303298
- Palmer A.R., Strobeck C. Fluctuating asymmetry analyses revisited // Developmental instability: causes and consequences / Ed. Polak M. New York: Oxford University Press, 2003. P. 279–319.
- Dudley R. The biomechanics of insect flight: form, function, evolution. Princeton: Princeton University Press, 2002. 476 p.
- Le Roy C., Debat V., Llaurens V. Adaptive evolution of butterfly wing shape: from morphology to behavior // Biol. Rev. Cambr. Philos. Soc. 2019. V. 94. № 4. P. 1261–1281. https://doi.org/10.1111/brv.12500
- Adams D.C., Rohlf F.J., Slice D.E. Geometric morphometrics: ten years of progress following the “revolution” // Ital. J. Zool. 2004. V. 71. P. 5–16. https://doi.org/10.1080/11250000409356545
- Adams D.C., Rohlf F.J., Slice D.E. A field comes of age: geometric morphometrics in the 21st century // Hystrix: Ital. J. Mammal. 2013. V. 24. P. 7–14. https://doi.org/10.4404/hystrix-24.1-6283
- Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L. Geometric morphometrics for biologist: a primer. New York: Elsevier Academic Press, 2004. 443 p.
- Mitteroecker P., Gunz P. Advances in geometric morphometrics // Evol. Biol. 2009. V. 36. P. 235–247. https://doi.org/10.1007/s11692-009-9055-x
- Schwanwitsch B.N. On the groundplan of the wing pattern in nymphalids and certain other families of rhopalocerous Lepidoptera // Proc. Zool. Soc. Lond. B. 1924. V. 34. P. 509–528. https://doi.org/10.1111/J.1096-3642.1924.TB01511.X
- Nijhout H.F. The development and evolution of butterfly wing patterns. Washington: Smithsonian Institution Press, 1991. 297 p.
- Diversity and evolution of butterfly wing patterns / Eds. Sekimura T., Nijhout H.F. Singapore: Springer Nature, 2017. 321 p.
- Monteiro A. Origin, development, and evolution of butterfly eyespots // Annu. Rev. Entomol. 2015. V. 60. P. 253–271. https://doi.org/10.1146/annurev-ento-010814-020942
- Nijhout H.F. A comprehensive model for colour pattern formation in butterflies // Proc. R. Soc. Lond. B Biol. Sci. 1990. V. 239. P. 81–113. https://doi.org/10.1098/rspb.1990.0009
- Iwata M., Otaki J.M. Focusing on butterfly eyespot focus: uncoupling of white spots from eyespot bodies in nymphalid butterflies // SpringerPlus. 2016. V. 5. Art. 1287. https://doi.org/10.1186/s40064-016-2969-8
- Ford E.B. Ecological genetics. 2-nd ed. Methuen, London, 1965. 335 p.
- Frazer J.F.D., Willcox H.N.A. Variation in spotting among the close relatives of the butterfly, Maniola jurtina // Heredity. 1975. V. 34. № 3. P. 305–322. https://doi.org/10.1038/hdy.1975.41
- Roskam J.C., Brakefield P.M. Seasonal polyphenism in Bicyclus (Lepidoptera: Satyridae) butterflies: different climates need different cues // Biol. J. Linn. Soc. 1999. V. 66. P. 345–356. https://doi.org/10.1111/j.1095-8312.1999.tb01895.x
- Brakefield P., Gates J., Keys D. et al. Development, plasticity and evolution of butterfly eyespot patterns // Nature. 1996. V. 384. № 21. P. 236–241. https://doi.org/10.1038/384236a0
- Bhardwaj S., Jolander L.S.H., Wenk M.R. et al. Origin of the mechanism of phenotypic plasticity in satyrid butterfly eyespots // eLife. 2020. V. 9. P. 1–13. https://doi.org/10.7554/eLife.49544
- Marcus J.M. Evo-Devo of butterfly wing patterns // Evolutionary Developmental Biology-A Reference Guide / Eds. L. Nuño de la Rosa, G.B. Müller. Cham: Springer, 2019. P. 1–13.
- Seppänen R. Differences in spotting pattern between populations of Aphantopus hyperantus (Lepidoptera, Satyridae) in southern Finland // Ann. Zool. Fenn. 1981. V. 18. P. 1–36.
- Горбач В.В. Внутрипопуляционная изменчивость элементов рисунка на крыльях глазка цветочного Aphantopus hyperantus (Lepidoptera, Satyridae) // Уч. зап. Петрозав. гос. ун-та. 2012. № 6. С. 27–31.
- Захарова Е.Ю., Шкурихин А.О. Морфологическая изменчивость бархатниц Aphantopus hyperantus и Erebia ligea (Lepidoptera, Satyridae) в аллопатрических и аллохронных микропопуляциях // Зоол. журн. 2021. Т. 100. Вып. 10. С. 1110–1123. https://doi.org/10.31857/S0044513421100135
- Захарова Е.Ю. Фенотипическая изменчивость сенницы Coenonympha arcania L. (Lepidoptera, Satyridae) в естественных и антропогенно трансформированных местообитаниях Среднего и Южного Урала // Энтомол. обозр. 2012. Т. 91. № 2. С. 250–268.
- Prudic K.L., Stoehr A.M., Wasik B.R., Monteiro A. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity // Proc. R. Soc. Lond. B: Biol. Sci. 2015. V. 282. Art. 20141531. https://doi.org/10.1098/rspb.2014.1531
- Vallin A., Jakobsson S., Lind J., Wiklund C. Prey survival by predator intimidation: an experimental study of peacock butterfly defence against blue tits // Proc. R. Soc. Lond. B Biol. Sci. 2005. V. 272. P. 1203–1207. https://doi.org/10.1098/rspb.2004.3034
- Kodandaramaiah U., Vallin A., Wiklund C. Fixed eyespot display in a butterfly thwarts attacking birds // Anim. Behav. 2009. V. 77. P. 1415–1419. https://doi.org/10.1016/j.anbehav.2009.02.018
- Kodandaramaiah U. The evolutionary significance of butterfly eyespots // Behav. Ecol. 2011. V. 22. P. 1264–1271. https://doi.org/10.1093/beheco/arr123
- Breuker C.J., Brakefield P.M. Female choice depends on size but not symmetry of dorsal eyespots in the butterfly Bicyclus anynana // Proc. R. Soc. Lond. B Biol. Sci. 2002. V. 269. P. 1233–1239. https://doi.org/10.1098/rspb.2002.2005
- Hoffman A.A., Woods R.E., Collins E. et al. Wing shape versus asymmetry as an indicator of changing environmental conditions in insects // Austr. J. Entomol. 2005. V. 44. P. 233–243. https://doi.org/10.1111/j.1440-6055.2005.00469.x
- Nijhout H.F., McKenna K.Z. Wing morphogenesis in Lepidoptera // Progr. Biophys. Molec. Biol. 2018. V. 137. P. 88–94. https://doi.org/10.1016/j.pbiomolbio.2018.04.008
- McKenna K.Z., Nijhout H.F. The development of shape. Modular control of growth in the lepidopteran forewing // JEZ-B. Molec. Dev. Evol. 2021. V. 338. P. 170–180. https://doi.org/10.1002/jez.b.23101
- Rohlf F.J. tpsDig2. 2017. URL: http://life.bio.sunysb.edu/morph/index.html
- Rasband W.S. ImageJ. 2014. URL: http://imagej.nih.gov/ij/
- Zakharova E.Yu., Shkurikhin A.O., Oslina T.S. Morphological variation of Melanargia russiae (Esper, 1783) (Lepidoptera, Satyridae) from the main part of the range and in case of its expansion to the north under climate change conditions // Contemp. Probl. Ecol. 2017. V. 10. P. 488–501. https://doi.org/10.1134/S1995425517050146
- Некрутенко Ю.П. Булавоусые чешуекрылые Крыма: Определитель. Киев: Наукова думка, 1985. 152 с.
- Klingenberg C.P., McIntyre G.S. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods // Evolution. 1998. V. 52. P. 1363–1375. https://doi.org/10.1111/j.1558-5646.1998.tb02018.x
- Klingenberg C.P., Barluenga M., Meyer A. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry // Evolution. 2002. V. 56. P. 1909–1920. https://doi.org/10.1111/j.0014-3820.2002.tb00117.x
- Jackson D.A. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches // Ecology. 1993. V. 74. P. 2204–2214. https://doi.org/10.2307/1939574
- Klingenberg C.P. Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications // Symmetry. 2015. V. 7. P. 843–934. https://doi.org/10.3390/sym7020843
- Symanski C., Redak R.A. Does fluctuating asymmetry of wing traits capture relative environmental stress in a lepidopteran? // Ecol. Evol. 2021. V. 11. P. 1199–1213. https://doi.org/10.1002/ece3.7097
- Drake A.G., Klingenberg C.P. The pace of morphological change: historical transformation of skull shape in St Bernard dogs // Proc. R. Soc. Lond. Ser. B: Biol. Sci. 2008. V. 275. P. 71–76. https://doi.org/10.1098/rspb.2007.1169
- Klingenberg C.P. Size, shape, and form: concepts of allometry in geometric morphometrics // Dev. Gen. Evol. 2016. V. 226. P. 113–137. https://doi.org/10.1007/s00427-016-0539-2
- Hammer Ø., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis // Palaeont. Electr. 2001. V. 4. № 1. P. 1–9.
- Klingenberg C.P. MorphoJ: an integrated software package for geometric morphometrics // Mol. Ecol. Res. 2011. V. 11. P. 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
- Ellington C. The aerodynamics of hovering insect flight. II. Morphological parameters // Philos. Trans. R. Soc. Lond. Ser B: Biol. Sci. 1984. V. 305. P. 17–40. https://doi.org/10.1098/rstb.1984.0050
- Szentgyorgyi H., Moroń D., Nawrocka A. et al. Forewing structure of the solitary bee Osmia bicornis developing on heavy metal pollution gradient // Ecotoxicology. 2017. V. 26. P. 1031–1040. https://doi.org/10.1007/s10646-017-1831-2
- Olofsson M., Vallin A., Jakobsson S., Wiklund C. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths // PLoS ONE. 2010. V. 5. № 5. Art. e10798. https://doi.org/10.1371/journal.pone.0010798
- Lyytinen A., Brakefield P.M, Lindstrӧm L., Mappes J. Does predation maintain eyespot plasticity in Bicyclus anynana? // Proc. R. Soc. Lond. B Biol. Sci. 2004. V. 271. P. 279–283. https://doi.org/10.1098/rspb.2003.2571
- Halali D., Krishna A., Kodandaramaiah U., Molleman F. Lizards as predators of butterflies: shape of wing damage and effects of eyespots // J. Lepid. Soc. 2019. V. 73. № 2. P. 78–86. https://doi.org/10.18473/lepi.73i2.a2
- Lyytinen A., Brakefield P.M., Mappes J. Significance of butterfly eyespots as an anti-predator device in ground-based and aerial attacks // Oikos. 2003. V. 100. P. 372–379. https://doi.org/10.1034/j.1600-0706.2003.11935.x
- Vlieger L., Brakefield P.M. The deflection hypothesis: eyespots on the margins of butterfly wings do not influence predation by lizards // Biol. J. Linn. Soc. 2007. V. 92. P. 661–667. https://doi.org/10.1111/j.1095-8312.2007.00863.x
- Захарова Е.Ю., Юсупова О.В. Морфологическая изменчивость и ландшафтно-биотопическая приуроченность микропопуляций сенницы Coenonympha arcania (L.) (Lepidoptera: Satyridae) в условиях гор Южного Урала // Бюл. МОИП. Отд. биол. 2017. Т. 122. Вып. 2. С. 18–26.
- Brakefield P.M. Phenotypic plasticity and fluctuating asymmetry as responses to environmental stress in the butterfly Bicyclus anynana // Environmental stress, adaptation and evolution / Eds. Bijlsma R., Loeschcke V. Basel: Birkäuser, 1997. P. 65–78.
- Breuker C.J., Brakefield P.M. Heat shock in the developmentally sensitive period of butterfly eyespots fails to increase fluctuating asymmetry // Evol. Dev. 2003. V. 5. № 3. P. 231–239. https://doi.org/10.1046/j.1525-142X.2003.03031.x
- Escós J.M., Alados C.L., Pugnaire F.I. et al. Stress resistance strategy in arid land shrub: interaction between developmental instability and fractal dimension // J. Arid Environ. 2000. V. 45. P. 325–336. https://doi.org/10.1006/jare.2000.0641
- Graham J.H., Raz S., Hel-Or H., Nevo E. Fluctuating asymmetry: methods, theory, and applications // Symmetry. 2010. V. 2. P. 466–540. https://doi.org/10.3390/sym2020466
- Huang D., Kong J., Seng Y. Effects of the heavy metal Cu2+ on growth, development, and population dynamics of Spodoptera litura (Lepidoptera: Noctuidae) // J. Econ. Entomol. 2012. V. 105. №1. P. 288–294. https://doi.org/10.1603/ec11163
- Islam S.J., Manna P., Unni B., Kailta J. Higher concentrations of heavy metals impair antioxidant defense mechanism and growth response of muga silkworm, Antheraea assamensis (Lepidoptera: Saturniidae) // J. Entomol. Zool. Stud. 2019. V. 7. № 2. P. 715–724.
- Jin P., Chen J., Zhan H. et al. Accumulation and excretion of zinc and their effects on growth and food utilization of Spodoptera litura (Lepidoptera: Noctuidae) // Ecotoxicol. Environ. Saf. 2020. V. 202. Art. 110883. https://doi.org/10.1016/j.ecoenv.2020.110883
- Shephard A.M., Mitchell T.S., Henry S.B. et al. Assessing zinc tolerance in two butterfly species: consequences for conservation in polluted environments // Insect Conserv. Diver. 2020. P. 201–210. https://doi.org/10.1111/icad.12404
- Kozlov M.V., Zvereva E.L. Confirmation bias in studies of fluctuating asymmetry // Ecol. Indic. 2015. V. 57. P. 293–297. https://doi.org/10.1016/j.ecolind.2015.05.014
- Козлов М.В. Исследования флуктуирующей асимметрии растений в России: мифология и методология // Экология. 2017. № 1. С. 3–12. https://doi.org/10.7868/S0367059717010103
- Kozlov M.V. Blind measurements did not confirm effects of forest fragmentation on fluctuating asymmetry of a tropical butterfly Morpho helenor // Sci. Nat. 2024. V. 110. Art. 28. https://doi.org/10.1007/s00114-024-01913-9
- Zakharov V.M. Analysis of fluctuating asymmetry as a method of biomonitoring at the population level // Bioind. Chem. Radioact. Pollut. / Ed. Krivolutsky D. Moscow, Boca Raton: Mir, CRC Press, 1990. P. 187–198.
- Clarke G.M. Fluctuating asymmetry: a technique for measuring developmental stress of genetic and environmental origin // Acta Zool. Fenn. 1992. V. 191. № 1. P. 31−35.
- Parsons P.A. Fluctuating asymmetry: an epigenetic measure of stress // Biol. Rev. 1990. V. 65. P. 131–145. https://doi.org/10.1111/j.1469-185x.1990.tb01186.x
- Parsons P.A. Fluctuating asymmetry: a biological monitor of environmental and genomic stress // Heredity. 1992. V. 68. № 4. P. 361−364. https://doi.org/10.1038/hdy.1992.51
- Bjorksten T., David P., Pomiankowski A., Fowler K. Fluctuating asymmetry of sexual and nonsexual traits in stalk-eyed flies: a poor indicator of developmental stress and genetic quality // J. Evol. Biol. 2000. V. 13. P. 89–97. https://doi.org/10.1046/j.1420-9101.2000.00146.x
- Cárcamo H.A., Floate K.D., Lee B.L. et al. Developmental instability in a stem-mining sawfly: can fluctuating asymmetry detect plant host stress in a model system? // Oecologia. 2008. V. 156. P. 505–513. https://doi.org/10.1007/s00442-008-1009-y
- Graham J.H., Roe K.E., West T.B. Effects of lead and benzene on the developmental stability of Drosophila melanogaster // Ecotoxicology. 1993. V. 2. P. 185–195. https://doi.org/10.1007/BF00116423
- B onada N., Williams D.D. Exploration of the utility of fluctuating asymmetry as an indicator of river condition using larvae of the caddisfly Hydropsyche morosa (Trichoptera: Hydropsychidae) // Hydrobiologia. 2002. V. 481. P. 147–156. https://doi.org/10.1023/A:1021297503935
- Bonada N., Vives S., Rieradevall M., Prat N. Relationship between pollution and fluctuating asymmetry in the pollution-tolerant caddisfly Hydropsyche exocellata (Trichoptera, Insecta) // Arch. Hydrobiol. 2005. V. 162. P. 167–185. https://doi.org/10.1127/0003-9136/2005/0162-0167
- Görür G. Developmental instability in cabbage aphid (Brevicoryne brassicae) populations exposed to heavy metal accumulated host plants // Ecol. Indic. 2006. V. 6. P. 743–748. https://doi.org/10.1016/j.ecolind.2005.09.001
- Rabitsch W.B. Levels of asymmetry in Formica pratensis Retz. (Hymenoptera, Insecta) from a chronic metal-contaminated site // Environ. Toxicol. Chem. 1997. V. 16. P. 1433–1440. https://doi.org/10.1002/etc.5620160716
- Zverev V., Kozlov M.V. Decline of Eulia ministrana (Lepidoptera: Tortricidae) in polluted habitats is not accompanied by phenotypic stress responses // Insect Sci. 2021. V. 28. P. 1482–1490. https://doi.org/10.1111/1744-7917.12862
- Woods R.E., Sgrò C.M., Hercus M.J., Hoffmann A.A. The association between fluctuating asymmetry, trait variability, trait heritability, and stress: a multiply replicated experiment on combined stresses in Drosophila melanogaster // Evolution. 1999. V. 53. P. 493–505. https://doi.org/10.1111/j.1558-5646.1999.tb03784.x
- Polak M., Kroeger D., Cartwright I., Ponce de Leon C. Genotype-specific responses of fluctuating asymmetry and preadult survival to the effects of lead and temperature stress in Drosophila melanogaster // Environ. Pollut. 2004. V. 127. P. 145–155. https://doi.org/10.1016/s0269-7491(03)00238-0
- Harrison F. Getting started with meta-analysis // Methods Ecol. Evol. 2011. V. 2. P. 1–10. https://doi.org/10.1111/j.2041-210X.2010.00056.x
- Leung B., Forbes M.R. Fluctuating asymmetry in relation to stress and fitness: effects of trait type as revealed by meta-analysis // Ecoscience. 1996. V. 3. P. 400–413. https://doi.org/10.1080/11956860.1996.11682357
- Beasley D.A.E., Bonisoli-Alquati A., Mousseau T.A. The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: A metaanalysis // Ecol. Indic. 2013. V. 30. P. 218–226. https://doi.org/10.1016/j.ecolind.2013.02.024
- Frankham R. Stress and adaptation in conservation genetics // J. Evol. Biol. 2005. V. 18. P. 750–755. https://doi.org/10.1111/j.1420-9101.2005.00885.x
- Zvereva E.L., Kozlov M.V. Responses of terrestrial arthropods to air pollution: a meta-analysis // Environ. Sci. Pollut. Res. 2010. V. 17. P. 297–311. https://doi.org/10.1007/s11356-009-0138-0
Supplementary files
