Macrozoobenthos of subarctic lakes as an indicator of climate change

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Changes in the macrozoobenthos of two northern lakes differing in degree of humification of water over the 50-year period that have passed since the first studies were considered. In the lake with water uncolored by humus, the benthos biomass increased, and in the humified one, it decreased. The changes that have occurred are due to climate warming, especially pronounced in winter. It was concluded that even closely located bodies of water can respond differently to climate change. Depending on the nature of the catchment area and the morphology of the lakes, either an increase in their productivity due to the supply of nutrients or a decrease due to humification can be observed.

Full Text

Restricted Access

About the authors

A. A. Maximov

Zoological Institute, Russian Academy of Sciences

Author for correspondence.
Email: alexeymaximov@mail.ru
Russian Federation, Saint Petersburg

N. A. Berezina

Zoological Institute, Russian Academy of Sciences

Email: alexeymaximov@mail.ru
Russian Federation, Saint Petersburg

References

  1. Callaghan T.V., Tweedie C.E., Åkerman J. et al. Multi-decadal changes in tundra environments and ecosystems: synthesis of the international polar year-back to the future project (IPY-BTF) // AMBIO. 2011. V. 40. № 6. P. 705–716. https://doi.org/10.1007/s13280-011-0179-8
  2. Heino J., Culp J.M., Erkinaro J. et al. Abruptly and irreversibly changing Arctic freshwaters urgently require standardized monitoring // Journal of Applied Ecology. 2020. V. 57. № 7. P. 1192–1198. https://doi.org/10.1111/1365-2664.13645
  3. Третий оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации / Под ред. Катцова В.М. Санкт-Петербург: Наукоемкие технологии, 2022. 676 с.
  4. ACIA. Arctic Climate Impact Assessment. Cambridge: Cambridge University Press, 2005. 1042 p.
  5. Blenckner T. A conceptual model of climate-related effects on lake ecosystems // Hydrobiologia. 2005. V. 533. P. 1–14.
  6. Nickus U., Bishop K., Erlandsson M. et al. Direct impacts of climate change on freshwater ecosystems // Climate Change Impacts on Freshwater Ecosystems. Blackwell Publishing Ltd., 2010. P. 38–64.
  7. Gronskaya T.P., Lemeshko N.A., Arvola L., Järvinen M. Lakes of European Russia and Finland as indicators of climate change // World Resource Review. 2002. V. 14. P. 189–203.
  8. Adrian R., O’Reilly C.M., Zagarese H. et al. Lakes as sentinels of climate change // Limnology and Oceanography. 2009. V. 54. № 6. Part 2. P. 2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283
  9. Schindler D.W. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes // Limnology and Oceanography. 2009. V. 54. № 6. Part 2. P. 2349–2358. https://doi.org/10.4319/lo.2009.54.6_part_2.2349
  10. Moiseenko T.I., Sharov A.N., Vandish O.I. et al. Long-term modification of Arctic lake ecosystems: Reference condition, degradation under toxic impacts and recovery (case study Imandra Lakes, Russia) // Limnologica. 2009. V. 39. № 1. P. 1–13. https://doi.org/10.1016/j.limno.2008.03.003
  11. Максимов А.А. Межгодовая и многолетняя динамика макрозообентоса на примере вершины Финского залива. СПб.: Нестор-История, 2018. 260 с.
  12. Биологическая продуктивность северных озер. 1. Озера Кривое и Круглое. Л.: Наука, 1975. 228 с.
  13. Przhiboro A.A. The quantitative characteristics of Diptera (Insecta) of the shallow littoral zone of small lakes in the North Karelia // Trudy Zoologicheskogo Instituta. 1999. V. 281. P. 129–134.
  14. Przhiboro A., Sæther O.A. Littoral chironomid communities of two small lakes in northern Karelia (Russia) studied by emergence traps // Contemporary chironomid studies: Proceedings of the 17th international symposium on Chironomidae. 2011. P. 187–217.
  15. Przhiboro A., Ekrem T., Stur E. Taxonomy and bio- nomics of Tanytarsus recurvatus Brundin, 1947 // Contemporary chironomid studies: Proceedings of the 17th international symposium on Chironomidae. 2011. P. 157–182.
  16. Maximov A.A., Berezina N.A., Maximova O.B. Interannual changes in benthic biomass under climate-induced variations in productivity of a small northern lake // Fundamental and Applied Limnology / Archiv für Hydrobiologie. 2021. V. 194. № 3. P. 187–199. https://doi.org/10.1127/fal/2020/1291
  17. Максимов А.А. Многолетняя изменчивость климатических факторов и динамика сообществ донных животных // Динамика биологического разнообразия и биоресурсов континентальных водоемов. СПб.: Наука, 2012. C. 126–138.
  18. Sharov A.N., Berezina N.A., Nazarova L.E. et al. Links between biota and climate-related variables in the Baltic region using Lake Onega as an example // Oceanologia. 2014. V. 56. № 2. P. 291–306. https://doi.org/10.5697/oc.56–2.291
  19. Петухов В.А., Смуров А.О. О жизненном цикле Paramononchus alimovi Tsalolichin, 1990 и влиянии климатических факторов на количественное развитие этого вида в озере Кривое // Труды Зоологического ин-та РАН. 2019. Т. 323. № 2. C. 127–135.https://doi.org/10.31610/trudyzin/2019.323.2.127
  20. Максимов А.А., Березина Н.А., Литвинчук Л.Ф. и др. Гидробиологическая характеристика малых озер Северной Карелии в период ледостава // Труды Зоологического ин-та РАН. 2023. T. 327. № 3. C. 451–467. https://doi.org/10.31610/trudyzin/2023.327.3.451
  21. Жадин В.И. Методы гидробиологического исследования. М.: Высшая школа, 1960. 191 с.
  22. Урбах В.Ю. Математическая статистика для биологов и медиков. М.: Изд-во АН СССР, 1963. 324 с.
  23. Максимов А.А. Многолетние изменения макрозообентоса Невской губы // Биология внутренних вод. 2004. № 3. C. 84–92.
  24. Golubkov S., Alimov A. Ecosystem changes in the Neva Estuary (Baltic Sea): Natural dynamics or response to anthropogenic impacts? // Marine Pollution Bulletin. 2010. V. 61. P. 198–204. https://doi.org/10.1016/j.marpolbul.2010.02.014
  25. Моисеенко Т.И., Базова М.М., Дину М.И. и др. Изменение геохимии вод суши в условиях потепления климата и снижения выпадений кислот: восстановление или эволюция озер? // Геохимия. 2022. Т. 67. № 7. С. 668–685. [Moiseenko T.I., Bazova M.M., Dinu M. et al. Changes in the geochemistry of land waters at climate warming and a decrease in acid deposition: recovery of the lakes or their evolution? // Geochemistry International. 2022. V. 60. P. 685–701.] https://doi.org/10.1134/S0016702922060039
  26. Моисеенко Т.И., Базова М.М., Льюмменс Е.О. Биогеохимические изменения арктических озер в условиях потепления климата: региональные особенности// Геохимия. 2023. T. 68. № 4, С. 409–423. [Moiseenko T.I., Bazova M.M., Lummens E.O. Biogeochemical changes in arctic lakes at climate warming: regional features // Geochemistry International. 2023. V. 61. № 4. P. 387–400.] https://doi.org/10.1134/s0016702923040109
  27. Шаров А.Н., Никулина В.Н., Максимов А.А. Фитопланктон субарктического озера в условиях климатической изменчивости // Региональная экология. 2019. № 2. Т.56. C. 51–56.
  28. Никулина В.Н. Многолетние изменения фитопланктона в водоеме, не подверженном антропогенному воздействию (оз. Кривое, Северная Карелия) // Труды Зоологического ин-та РАН. 2016. Т. 320. № 3. P. 336–347. https://doi.org/10.31610/trudyzin/2016.320.3.336
  29. Maximov A.A. Population dynamics of the glacial relict amphipods in a subarctic lake: role of density-dependent and density-independent factors // Ecology and Evolution. 2021. V. 11. № 22. P. 15905–15915. https://doi.org/10.1002/ece3.8260
  30. Eriksson Wiklund A.-K., Sundelin B. Impaired reproduction in the amphipods Monoporeia affinis and Pontoporeia femorata as a result of moderate hypoxia and increased temperature // Marine Ecology Progress Series. 2001. V. 222. P. 131–141.
  31. Karlsson J., Byström P., Ask J. et al. Light limitation of nutrient-poor lake ecosystems // Nature. 2009. V. 460. № 7254. P. 506–509. https://doi.org/10.1038/nature08179
  32. Senar O.E., Creed I.F., Trick C.G. Lake browning may fuel phytoplankton biomass and trigger shifts in phytoplankton communities in temperate lakes // Aquatic Sciences. 2021. V. 83. № 2. P. 21. https://doi.org/10.1007/s00027-021-00780-0
  33. Solomon C.T., Jones S.E., Weidel B.C. et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges // Ecosystems. 2015. V. 18. № 3. P. 376–389. https://doi.org/10.1007/s10021-015-9848-y
  34. Bergström A.-K., Karlsson J. Light and nutrient control phytoplankton biomass responses to global change in northern lakes // Global Change Biology. 2019. V. 25. № 6. P. 2021–2029. https://doi.org/10.1111/gcb.14623
  35. Jones R.I., Grey J. Stable isotope analysis of chironomid larvae from some Finnish forest lakes incdicates dietary contribution form biogenic methane // Boreal Environ. Res. 2004. V. 9. P. 17–23.
  36. Hershey A.E., Beaty S., Fortino K. et al. Stable isotope signatures of benthic invertebrates in arctic lakes indicate limited coupling to pelagic production // Limnology and Oceanography. 2006. V. 51. № 1. P. 177–188.
  37. Hershey A.E., Northington R.M., Hart-Smith J. et al. Methane efflux and oxidation, and use of methane-derived carbon by larval Chironomini, in arctic lake sediments // Limnology and Oceanography. 2015. V. 60. № 1. P. 276–285. https://doi.org/10.1002/lno.10023
  38. Creed I.F., Bergström A.-K., Trick C.G. et al. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes // Global Change Biology. 2018. V. 24. № 8. P. 3692–3714. https://doi.org/10.1111/gcb.14129
  39. Eriksson Wiklund A.-K., Sundelin B., Rosa R. Population decline of amphipod Monoporeia affinis in Northern Europe: consequence of food shortage and competition? // J. of Experimental Marine Biology and Ecology. 2008. V. 367. P. 81–90. https://doi.org/10.1016/j.jembe.2008.08.018
  40. Калинкина Н.М., Сидорова А.И., Полякова Т.Н. и др. Снижение численности глубоководного макрозообентоса Онежского озера в условиях многофакторного воздействия // Принципы экологии. 2016. T. 5. № 2. С. 47–68.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map-scheme of the studied lakes with indication of sampling stations

Download (247KB)
3. Fig. 2. Changes in mean surface air temperature in June-September (1), May (2), October-November (3) and December-April (4) at Umba meteorological station from 1960 to 2020. The parameters of linear trends are given in Table 1

Download (110KB)
4. Fig. 3. Composition of macrozoobenthos of Lake Krivoye in 1968-1969 and 2019-2020: 1 - Oligochaeta, 2 - Bivalvia, 3 - Gastropoda, 4 - Megaloptera, 5 - Ephemeroptera, 6 - Chironomidae, 7 - Amphipoda, 8 - others

Download (336KB)
5. Fig. 4. Composition of macrozoobenthos of Lake Krugloe in 1968-1969 and 2019-2020: 1 - Bivalvia, 2 - Gastropoda, 3 - Megaloptera, 4 - Ephemeroptera, 5 - Chironomidae, 6 - Diptera (except Chironomidae), 7 - others

Download (358KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies