Response of invertebrate populations of steppe and floodplain meadows to emissions from the Karabash copper smelter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the data of 2014, the response of invertebrate communities in floodplain and steppe meadows to emissions from the Karabash Copper Smelter (the main pollutants are SO2 and heavy metals) was assessed. When approaching the smelter, the phytomass of forbs decreases (2–7 times) and the proportion of graminoids increases (from 36–45 to 53–85%) in the phytocenoses of both meadow types. The abundance of invertebrates changes similarly in meadows of both types: the total abundance decreases (by 1.4–2.9 times), while the abundance of all trophic and most of the large taxonomic groups does not change. The taxonomic structure of invertebrates in floodplain meadows changes only in the impact zone, whereas in the steppe meadows – already in the buffer zone. This result partially confirms the hypothesis put forward that the response to pollution in floodplain meadow communities is less pronounced than in steppe meadow communities.

About the authors

A. V. Nesterkov

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: nesterkov@ipae.uran.ru
Yekaterinburg, Russia

D. V. Nesterkova

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: nesterkov@ipae.uran.ru
Yekaterinburg, Russia

References

  1. Чернов Ю.И., Руденская Л.В. Комплекс беспозвоночных – обитателей травостоя как ярус животного населения // Зоол. журн. 1975. Т. 54. Вып. 6. С. 884–894.
  2. Нестерков А.В., Воробейчик Е.Л. Изменение структуры населения беспозвоночных-хортобионтов под действием выбросов медеплавильного завода // Экология. 2009. № 4. С. 303–313 [Nesterkov A.V., Vorobeichik E.L. Changes in the structure of chortobiont invertebrate community exposed to emissions from a copper smelter // Russ. J. Ecol. 2009. V. 40. № 4. P. 286–296.]
  3. Золотарев М.П., Нестерков А.В. Паукообразные (Aranei, Opiliones) лугов: Реакция на загрязнение выбросами Среднеуральского медеплавильного комбината // Экология. 2015. № 1. С. 48–56. [Zolotarev M.P., Nesterkov A.V. Arachnids (Aranei, Opiliones) in meadows: Response to pollution with emissions from the Middle Ural Copper Smelter // Russ. J. Ecol. 2015. V. 46. № 1. P. 81–88.]
  4. Нестерков А.В. Признаки восстановления сообществ беспозвоночных травостоя после снижения выбросов медеплавильного завода // Экология. 2022. № 6. P. 468–478. [Nesterkov A.V. Recovery signs in grass-stand invertebrate communities after a decrease in copper-smelting emissions // Russ. J. Ecol. 2022. V. 53. № 6. P. 553–564.]
  5. Hunter B.A., Johnson M.S., Thompson D.J. Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. II. Invertebrates // Journal of Applied Ecology. 1987. V. 24. № 2. P. 587–599.
  6. Perner J., Voigt W., Bährmann R. et al. Responses of arthropods to plant diversity // Ecography. 2003. V. 26. № 6. P. 788–800.
  7. Заключение экспертной комиссии по рассмотрению материалов оценки степени экологического неблагополучия окружающей среды и состояния здоровья населения и проекта Федеральной целевой программы первоочередных неотложных мер на 1996–2000 гг. по выводу территории г. Карабаша Челябинской области из состояния экологического бедствия и оздоровлению населения. https://docs.cntd.ru/document/9035640
  8. Lightfoot D.C., Whitford W.G. Productivity of creosotebush foliage and associated canopy arthropods along a desert roadside // American Midland Naturalist. 1991. V. 125. P. 310–322.
  9. D’Odorico P., Bhattachan A. Hydrologic variability in dryland regions // Philosophical Transactions of the Royal Society B: Biological Sciences. 2012. V. 367. P. 3145–3157.
  10. Schowalter T.D., Lightfoot D., Whitford W. Diversity of arthropod responses to host-plant water stress in a desert ecosystem in southern New Mexico // American Midland Naturalist. 1999. V. 142. P. 281–290.
  11. Zhu H., Wang D.L., Wang L. et al. Effects of altered precipitation on insect community composition and structure in a meadow steppe // Ecological Entomology. 2014. V. 39. № 4. P. 453–461.
  12. Wenninger E.J., Inouye R.S. Insect community response to plant diversity and productivity in a sagebrush-steppe ecosystem // Journal of Arid Environments. 2008. V. 72. № 1. P. 24–33.
  13. Warrington S., Whittaker J.B. Interactions between sitka spruce, the green spruce aphid, sulphur-dioxide pollution and drought // Environmental Pollution. 1990. V. 65. № 4. P. 363–370.
  14. Burkhardt J., Pariyar S. Particulate pollutants are capable to ‘degrade’ epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.) // Environmental Pollution. 2014. V. 184. P. 659–667.
  15. Sediment dynamics and pollutant mobility in rivers. Berlin, Heidelberg: Springer-Verlag, 2007. 430 p.
  16. Sivakumar S. Effects of metals on earthworm life cycles // Environmental Monitoring and Assessment. 2015. V. 187. № 8. P.1–16.
  17. Klok C., Kraak M.H.S. Living in highly dynamic polluted river floodplains, do contaminants contribute to population and community effects? // Science of the Total Environment. 2008. V. 406. № 3. P. 455–461.
  18. Schipper A.M., Hendriks A.J., Ragas A.M.J. et al. Disentangling and ranking the influences of multiple environmental factors on plant and soil-dwelling arthropod assemblages in a river Rhine floodplain area // Hydrobiologia. 2014. V. 729. № 1. P. 133–142.
  19. Purvis O.W., Chimonides P.J., Jones G.C. et al. Lichen biomonitoring near Karabash Smelter Town, Ural Mountains, Russia, one of the most polluted areas in the world // Proceedings of the Royal Society B: Biological Sciences. 2003. V. 271. P. 221–226.
  20. Smorkalov I.A., Vorobeichik E.L. Does long-term industrial pollution affect the fine and coarse root mass in forests? // Water Air and Soil Pollution. 2022. V. 233. № 2. P. 55.
  21. Нестерков А.В. Опыт использования биоценометра с вакуумным пробосборником для учета беспозвоночных травостоя // Евразиатский энтомологич. журн. 2014. Т. 13. № 3. С. 244–245.
  22. R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/.
  23. Fox J., Weisberg S. An {R} companion to applied regression. https://socialsciences.mcmaster.ca/jfox/-Books/Companion/.
  24. Tremblay A., Ransijn J. LMERConvenienceFunctions: Model selection and post-hoc analysis for (G)LMER models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions.
  25. Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models // Biometrical Journal. 2008. V. 50. № 3. P. 346–363.
  26. Pustejovsky J.E., Chen M., Swan D.M. SingleCaseES: A calculator for single-case effect sizes. R package version 0.6.1. https://CRAN.R-project.org/package=SingleCaseES.
  27. Begueria S., Vicente-Serrano S.M. SPEI: Calculation of the standardised precipitation-evapotranspiration index. R package version 1.7. https://CRAN.R-project.org/package=SPEI.
  28. Расписание погоды. Информация о погодных условиях метеостанции г. Челябинск (синоптический индекс станции – 28630). https://www.rp5.ru.
  29. Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag, 2016. 260 p.
  30. Suzuki R., Terada Y., Shimodaira H. pvclust: Hierarchical clustering with P-values via multiscale bootstrap resampling. R package version 2.2-0. https://CRAN.R-project.org/package=pvclust.
  31. Zvereva E., Kozlov M. Changes in the abundance of vascular plants under the impact of industrial air pollution // Water Air and Soil Pollution. 2011. Online publication. P. 1–11.
  32. Воробейчик Е.Л., Садыков О.Ф., Фарафонтов М.Г. Экологическое нормирование техногенных загрязнений наземных экосистем. Екатеринбург: Наука, 1994. 280 с.
  33. Воробейчик Е.Л., Трубина М.Р., Хантемирова Е.В. и др. Многолетняя динамика лесной растительности в период сокращения выбросов медеплавильного завода // Экология. 2014. № 6. С. 448–458. [Vorobeichik E.L., Trubina M.R., Khantemirova E.V. et al. Long-term dynamic of forest vegetation after reduction of copper smelter emissions // Russ. J. Ecol. 2014. V. 45. № 6. P. 498–507.]
  34. Hunter B.A., Johnson M.S., Thompson D.J. Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. I. Soil and vegetation contamination // Journal of Applied Ecology. 1987. V. 24. № 2. P. 573–586.
  35. Zvereva E., Kozlov M. Responses of terrestrial arthropods to air pollution // Environmental Science and Pollution Research. 2010. V. 17. № 2. P. 297–311.
  36. Воробейчик Е.Л., Ермаков А.И., Золотарев М.П. и др. Изменение разнообразия почвенной мезофауны в градиенте промышленного загрязнения // Русский энтомологич. журн. 2012. № 21. С. 203–218.
  37. Воробейчик Е.Л., Ермаков А.И., Гребенников М.Е. Начальные этапы восстановления сообществ почвенной мезофауны после сокращения выбросов медеплавильного завода // Экология. 2019. № 2. С. 133–148. [Vorobeichik E.L., Ermakov A.I., Grebennikov M.E. Initial stages of recovery of soil macrofauna communities after reduction of emissions from a copper smelter // Russ. J. Ecol. 2019. V. 50. № 2. P. 146–160.]
  38. Ермаков А.И. Изменение комплекса некрофильных беспозвоночных под действием загрязнения выбросами Среднеуральского медеплавильного завода // Экология. 2013. № 6. С. 1–8. [Ermakov A.I. Changes in the assemblage of necrophilous invertebrates under the effect of pollution with emissions from the Middle Ural Copper Smelter // Russ. J. Ecol. 2013. V. 44. № 6. P. 515–522.]
  39. Бельская Е.А., Зиновьев Е.В. Структура комплексов жужелиц (Coleoptera, Carabidae) в природных и техногенно-нарушенных лесных экосистемах на юго-западе Свердловской области // Сибирский экологич. журн. 2007. № 4. С. 533–543.
  40. Золотарев М.П. Изменение таксономической структуры населения паукообразных-герпетобионтов в градиенте загрязнения от выбросов медеплавильного комбината // Экология. 2009. № 5. С. 378–382. [Zolotarev M.P. Changes in the taxonomic structure of herpetobiont arachnids along the gradient of pollution with emissions from a copper smelter // Russ. J. Ecol. 2009. V. 40. № 5. P. 356–360.]
  41. Бельская Е.А. Динамика трофической активности филлофагов березы в период снижения атмосферных выбросов медеплавильного завода // Экология. 2018. № 1. С. 74–80. [Belskaya E. Dynamics of trophic activity of leaf-eating insects on birch during reduction of emissions from the Middle Ural Copper Smelter // Russ. J. Ecol. 2018. V. 49. № 1. P. 87–92.]
  42. Haddad N.M., Crutsinger G.M., Gross K. et al. Plant species loss decreases arthropod diversity and shifts trophic structure // Ecology Letters. 2009. V. 12. № 10. P. 1029–1039.
  43. Schaffers A.P., Raemakers I.P., Sýkora K.V. et al. Arthropod assemblages are best predicted by plant species composition // Ecology. 2008. V. 89. № 3. P. 782–794.
  44. Dulya O.V., Mikryukov V.S., Hlystov I.A. Interspecific differences in determinants of plant distribution in industrially polluted areas // Plant and Soil. 2015. V. 394. № 1–2. P. 329–342.
  45. Дуля О.В., Микрюков В.С., Воробейчик Е.Л. Стратегии адаптации Deschampsia caespitosa и Lychnis flos-cuculi к загрязнению тяжелыми металлами: Анализ на основе зависимости доза–эффект // Экология. 2013. № 4. С. 243–253. [Dulya O.V., Mikryukov V.S., Vorobeichik E.L. Strategies of adaptation to heavy metal pollution in Deschampsia caespitosa and Lychnis flos-cuculi: Analysis based on dose-response relationship // Russ. J. Ecol. 2013. V. 44. № 4. P. 271–281.]
  46. Dahmani-Muller H., van Oort F., Gelie B. et al. Strategies of heavy metal uptake by three plant species growing near a metal smelter // Environmental Pollution. 2000. V. 109. № 2. P. 231–238.
  47. Naiman R., Decamps H. The ecology of interfaces // Annual Review of Ecology and Systematics. 1997. V. 28. P. 621–658.
  48. Wang S., Wei M., Cheng H. et al. Indigenous plant species and invasive alien species tend to diverge functionally under heavy metal pollution and drought stress // Ecotoxicology and Environmental Safety. 2020. V. 205. P. 111160.
  49. Jhee E.M., Boyd R.S., Eubanks M.D. Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae) // New Phytologist. 2005. V. 168. № 2. P. 331–343.
  50. Lindqvist L., Block M., Tjälve H. Distribution and excretion of Cd, Hg, methyl-Hg and Zn in the predatory beetle Pterostichus niger (Coleoptera: Carabidae) // Environmental Toxicology and Chemistry. 1995. V. 14. P. 1195–1201.
  51. Vickerman D.B., Trumble J.T. Biotransfer of selenium // Ecotoxicology. 2003. V. 12. № 6. P. 497–504.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (20KB)
3.

Download (79KB)
4.

Download (220KB)
5.

Download (44KB)

Copyright (c) 2023 А.В. Нестерков, Д.В. Нестеркова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies