The potential of using the Blue Intensity parameter to assess the climate response of radial tree growth on the Crimean peninsula

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of assessing the climate signal contained in the width of tree rings and the indicator of optical density of wood (Blue Intensity) of related species of pine trees – black (Pinus nigra Arnold) and Pitsunda (Pinus brutia Ten) growing on the southern coast of the Crimean peninsula are presented. The influence of the cumulative effect of moisture deficiency on the radial growth and lignification processes of late wood of the studied conifer species is shown. A specific reaction of P. nigra in high mountain areas to conditions of prolonged drought was revealed. The prospects for using the Blue Intensity indicator for dendroclimatic studies on the territory of the Crimean Peninsula have been demonstrated.

About the authors

A. V. Komarova

Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences; Ural Federal University named after. the first President of Russia B.N. Yeltsin

Email: nadya@ipae.uran.ru
Russia, Yekaterinburg; Russia, Yekaterinburg

V. V. Kukarskikh

Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences; Siberian Federal University

Email: nadya@ipae.uran.ru
Russia, Yekaterinburg; Russia, Krasnoyarsk

M. O. Bubnov

Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences

Email: nadya@ipae.uran.ru
Russia, Yekaterinburg

N. M. Devi

Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences; Kazan Federal University

Author for correspondence.
Email: nadya@ipae.uran.ru
Russia, Yekaterinburg; Russia, Kazan

References

  1. Speer J.H. Fundamentals of tree-ring research. Arizona: University of Arizona Press, 2012. 521 p.
  2. Schweingruber F.H. Tree Rings // Tree Rings. Dordrecht, Boston, London: Kluwer Academic Publishers, 1988. 276 p. https://doi.org/10.1007/978-94-009-1273-1
  3. Saurer M. The influence of climate on the oxygen isotopes in tree rings // Isotopes in Environmental and Health Studies. 2010. V. 39. № 2. P. 105–112. https://doi.org/10.1080/1025601031000108633
  4. Sidorova O.V., Saurer M., Myglan V.S. et al. A multi-proxy approach for revealing recent climatic changes in the Russian Altai // Climate Dynamics. 2012. V. 38. № 1–2. P. 175–188. https://doi.org/10.1007/S00382-010-0989-6
  5. Loader N.J., McCarroll D., Gagen M. et al. Extracting climatic information from stable isotopes in tree rings // Terrestrial Ecology. 2007. V. 1. P. 25–48. https://doi.org/10.1016/S1936-7961(07)01003-2
  6. Björklund J., Von Arx G., Nievergelt D. et al. Scientific merits and analytical challenges of tree-ring densitometry // Reviews of Geophysics. 2019. V. 15. Art. 16. https://doi.org/10.1029/2019RG000642
  7. Kirdyanov A.V., Vaganov E.A., Hughes M.K. Separating the climatic signal from tree-ring width and maximum latewood density records // Trees-Structure and Function. 2007. V. 21. № 1. P. 37–44. https://doi.org/10.1007/S00468-006-0094-Y
  8. McCarroll D., Pettigrew E., Luckman A. et al. Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings // Arctic, Antarctic, and Alpine Research. 2002. V. 34. № 4. P. 450–453. https://doi.org/10.1080/15230430.2002.12003516
  9. Campbell R., McCarroll D., Loader N.J. et al. Blue intensity in Pinus sylvestris tree-rings: Developing a new palaeoclimate proxy // Holocene. 2007. V. 17. № 6. P. 821–828. https://doi.org/10.1177/0959683607080523
  10. Rydval M., Larsson L.A., McGlynn L. et al. Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland // Dendrochronologia. 2014. V. 32. № 3. P. 191–204. https://doi.org/10.1016/j.dendro.2014.04.003
  11. Fukazawa K. Ultraviolet microscopy. Springer, Berlin, Heidelberg, 1992. P. 110–121. https://doi.org/10.1007/978-3-642-74065-7_8
  12. Blake S.A.P., Palmer J.G., Björklund J. et al. Palaeoclimate potential of New Zealand Manoao colensoi (silver pine) tree rings using Blue-Iintensity (BI) // Dendrochronologia. 2020. V. 60. Art. 125664. https://doi.org/10.1016/j.dendro.2020.125664
  13. Tsvetanov N., Dolgova E., Panayotov M. First measurements of Blue intensity from Pinus peuce and Pinus heldreichii tree rings and potential for climate reconstructions // Dendrochronologia. 2020. V. 60. Art. 125681. https://doi.org/10.1016/J.DENDRO.2020.125681
  14. Vincent J.F.V. From cellulose to cell // Journal of Experimental Biology. 1999. V. 202. № 23. P. 3263–3268. https://doi.org/10.1242/jeb.202.23.3263a
  15. Yan C., Yin M., Zhang N. et al. Stone cell distribution and lignin structure in various pear varieties // Scientia Horticulturae. 2014. V. 174. № 1. P. 142–150. https://doi.org/10.1016/j.scienta.2014.05.018
  16. Björklund J.A., Gunnarson B.E., Seftigen K. et al. Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information // Climate of the Past. 2014. V. 10. № 2. P. 877–885. https://doi.org/10.5194/cp-10-877-2014
  17. Wilson R., Rao R., Rydval M. et al. Blue Intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada // Holocene. 2014. V. 24. № 11. P. 1428–1438. https://doi.org/10.1177/0959683614544051
  18. Campbell R., McCarroll D., Robertson I. et al. Blue intensity in Pinus sylvestris tree rings: A manual for a new palaeoclimate proxy // Tree-Ring Research. 2011. V. 67. № 2. P. 127–134. https://doi.org/10.3959/2010-13.1
  19. Gindl W., Grabner M., Wimmer R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width // Trees-Structure and Function. 2000. V. 14. № 7. P. 409–414. https://doi.org/10.1007/s004680000057
  20. Björklund J., Gunnarson B.E., Seftigen K. et al. Using adjusted Blue intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia // Holocene. 2015. V. 25. № 3. P. 547–556. https://doi.org/10.1177/0959683614562434
  21. Dolgova E. June-september temperature reconstruction in the Northern Caucasus based on Blue intensity data // Dendrochronologia. 2016. V. 39. P. 17–23. https://doi.org/10.1016/J.DENDRO.2020.125681
  22. Rydval M., Loader N.J., Gunnarson B.E. et al. Reconstructing 800 years of summer temperatures in Scotland from tree rings // Climate Dynamics. 2017. V. 49. № 9–10. P. 2951–2974. https://doi.org/10.1007/s00382-016-3478-8
  23. Wilson R., D’Arrigo R., Andreu-Hayles L. et al. Experiments based on Blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska // Climate of the Past. 2017. V. 13. № 8. P. 1007–1022. https://doi.org/10.5194/cp-13-1007-2017
  24. Wilson R., Anchukaitis K., Andreu-Hayles L. et al. Improved dendroclimatic calibration using Blue intensity in the southern Yukon // Holocene. 2019. V. 29. № 11. P. 1817–1830. https://doi.org/10.1177/0959683619862037
  25. Seftigen K., Fuentes M., Ljungqvist F.C. et al. Using Blue intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve reconstruction of past hydroclimate variability // Climate Dynamics. 2020. V. 55. № 3–4. P. 579–594. https://doi.org/10.1007/s00382-020-05287-2
  26. Vyukhina A.A., Gurskaya M.A. Dendroclimatic potential of Blue intensity-based chronologies of northern Fennoscandia Scots pine // Journal of Siberian Federal University – Biology. 2022. V. 15. № 2. P. 244–263. https://doi.org/10.17516/1997-1389-0385
  27. Buckley B.M., Hansen K.G., Griffin K.L. et al. Blue Intensity from a tropical conifer’s annual rings for climate reconstruction: An ecophysiological perspective // Dendrochronologia. 2018. V. 50. P. 10–22. https://doi.org/10.1016/j.dendro.2018.04.003
  28. Wilson R., Allen K., Baker P. et al. Evaluating the dendroclimatological potential of Blue intensity on multiple conifer species from Tasmania and New Zealand // Biogeosciences. 2021. V. 18. № 24. P. 6393–6421. https://doi.org/10.5194/bg-18-6393-2021
  29. Reid E., Wilson R. Delta Blue intensity vs. maximum density: A case study using Pinus uncinata in the Pyrenees // Dendrochronologia. 2020. V. 61. P. 125706. https://doi.org/10.1016/j.dendro.2020.125706
  30. Akhmetzyanov L., Sánchez-Salguero R., García-González I. et al. Blue is the fashion in Mediterranean pines: New drought signals from tree-ring density in southern Europe // Science of the Total Environment. 2023. V. 856. P. 159291. https://doi.org/10.1016/j.scitotenv.2022.159291
  31. Gernandt D.S., Geada López G., Ortiz García S. et al. Phylogeny and classification of Pinus // Taxon. 2005. V. 54. № 1. P. 29–42. https://doi.org/10.2307/25065300
  32. Plugatar U.V. Forests of the Crimea. Yalta (in Russian): GBU RK “NBS-NTS”, 2015. 385 p.
  33. Fady B., Semerci H., Vendramin G.G. EUFORGEN Technical guidelines for genetic conservation and use for Aleppo pine (Pinus halepensis) and Brutia pine (Pinus brutia) // Rome: International Plant Genetic Resources Institute, 2003. 6 p.
  34. Isajev V., Fady B., Semerci H. et al. EUFORGEN Technical guidelines for genetic conservation and use for European black pine (Pinus nigra) // Rome: International Plant Genetic Resources Institute, 2003. 6 p.
  35. Koval I. Climatic signal in earlywood, latewood and total ring width of crimean pine (Pinus nigra subsp. pallasiana) from Crimean Mountains, Ukraine // Baltic Forestry. 2013. V. 19. № 2. P. 245–251.
  36. Solomina O., Davi N., D’Arrigo R. et al. Tree-ring reconstruction of Crimean drought and lake chronology correction // Geophysical Research Letters. 2005. V. 32. № 19. P. 1–4. https://doi.org/10.1029/2005GL023335
  37. Kukarskih V.V., Devi N.M., Surkov A.Y. et al. Climatic responses of Pinus brutia along the Black Sea coast of Crimea and the Caucasus // Dendrochronologia. 2020. V. 64. Art. 125763. https://doi.org/10.1016/j.dendro.2020.125763
  38. Сидоренко А.В. Геология СССР, Т. VIII. Крым. Геологическое описание. М.: Недра, 1969. 576 с.
  39. Подгородецкий П.Д. Крым. Природа. Симферополь: Таврия, 1988. 192 с.
  40. Caudullo G., Welk E., San-Miguel-Ayanz J. Chorological maps for the main European woody species // Data in Brief. 2017. V. 12. P. 662–666. https://doi.org/10.1016/j.dib.2017.05.007
  41. Ваганов Е.А., Шиятов С.Г., Мазепа В.С. Дендроклиматические исследования в Урало-Сибирской Субарктике. Новосибирск: СО РАН, 1996. 246 с.
  42. Stokes M., Smiley T. An introduction to tree-ring dating. Chicago, IL: University of Chicago Press, 1996. 73 p.
  43. Maxwell R.S., Larsson L.A. Measuring tree-ring widths using the CooRecorder software application // Dendrochronologia. 2021. V. 67. P. 125841. https://doi.org/10.1016/J.DENDRO.2021.125841
  44. Rinn F. Tsap V 3.6 Reference manual: computer program for tree-ring analysis and presentation. Heidelberg, Germany: Bierhelderweg 20, D-69126, 1996. 263 p.
  45. Grissino-Mayer H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA // Tree-Ring Research. 2001. V. 57. № 2. P. 205–221.
  46. Cook E.R., Peters K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies // Tree-Ring Bulletin. 1981. V. 41. P. 45–53.
  47. Bunn A.G. A dendrochronology program library in R (dplR) // Dendrochronologia. 2008. V. 26. № 2. P. 115–124. https://doi.org/10.1016/j.dendro.2008.01.002
  48. R Core Team. R: A Language and Environment for Statistical Computing. 2022.
  49. Zang C., Biondi F. Treeclim: an R package for the numerical calibration of proxy-climate relationships // Ecography. 2015. V. 38. № 4. P. 431–436. https://doi.org/10.1111/ecog.01335
  50. Vicente-Serrano S.M., Beguería S., López-Moreno J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index // Journal of Climate. 2010. V. 23. № 7. P. 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
  51. Sánchez-Salguero R., Camarero J.J., Hevia A. et al. What drives growth of Scots pine in continental Mediterranean climates: Drought, low temperatures or both? // Agricultural and Forest Meteorology. 2015. V. 206. P. 151–162. https://doi.org/10.1016/j.agrformet.2015.03.004
  52. Kukarskih V. V., Devi N.M., Bubnov M.O. et al. Radial growth of Scots pine in urban and rural populations of Ekaterinburg megalopolis // Dendrochronologia. 2022. V. 74. Art. 125974. https://doi.org/10.1016/J.DENDRO.2022.125974
  53. Janssen E., Kint V., Bontemps J.D. et al. Recent growth trends of black pine (Pinus nigra J.F. Arnold) in the eastern mediterranean // Forest Ecology and Management. 2018. V. 412. P. 21–28. https://doi.org/10.1016/J.FORECO.2018.01.047
  54. Silkin P.P., Kirdyanov A.V. The relationship between variability of cell wall mass of earlywood and latewood tracheids in larch tree-rings, the rate of tree-ring growth and climatic changes // Holzforschung. 2003. V. 57. № 1. P. 1–7. https://doi.org/10.1515/HF.2003.001
  55. Fonti P., Bryukhanova M.V., Myglan V.S. et al. Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay // Americ. J. of Botany. 2013. V. 100. № 7. P. 1332–1343. https://doi.org/10.3732/AJB.1200484
  56. Eilmann B., Zweifel R., Buchmann N. et al. Drought alters timing, quantity, and quality of wood formation in Scots pine // Journal of Experimental Botany. 2011. V. 62. № 8. P. 2763–2771. https://doi.org/10.1093/jxb/erq443
  57. Eilmann B., Buchmann N., Siegwolf R. et al. Fast response of Scots pine to improved water availability reflected in tree-ring width and δ 13C // Plant, Cell and Environment. 2010. V. 33. № 8. P. 1351–1360. https://doi.org/10.1111/j.1365-3040.2010.02153.x
  58. López R., Cano F.J., Rodríguez-Calcerrada J. et al. Tree-ring density and carbon isotope composition are early-warning signals of drought-induced mortality in the drought tolerant Canary Island pine // Agricultural and Forest Meteorology. 2021. V. 310. Art. 108634. https://doi.org/10.1016/j.agrformet.2021.108634
  59. Li X., Xi B., Wu X. et al. Unlocking drought-induced tree mortality: physiological mechanisms to modeling // Frontiers in Plant Science. 2022. V. 13. Art. 822. https://doi.org/10.3389/fpls.2022.835921
  60. Pompa-García M., Hevia A., Camarero J.J. Minimum and maximum wood density as proxies of water availability in two Mexican pine species coexisting in a seasonally dry area // Trees-Structure and Function. 2021. V. 35. № 2. P. 597–607. https://doi.org/10.1007/s00468-020-02062-y
  61. Camarero J.J., Hevia A. Links between climate, drought and minimum wood density in conifers // IAWA Journal. 2020. V. 41. № 2. P. 236–255. https://doi.org/10.1163/22941932-bja10005

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (112KB)
4.

Download (177KB)
5.

Download (178KB)

Copyright (c) 2023 А.В. Комарова, В.В. Кукарских, М.О. Бубнов, Н.М. Дэви

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies